High Performance Computing

Yusuke Nagasaka
Tokyo Institute of Technology
Dept. of mathematical and computing sciences
Matsuoka Lab.

Review Paper

- Algorithmic Approaches to Low Overhead Fault Detection for Sparse Linear Algebra [DSN2012]
 - Joseph Sloan
 - University of Illinois
 - Rakesh Kumar
 - University of Illinois
 - Greg Bronevetsky
 - Lawrence Livermore National Laboratory

Fault detection in large scale system

- HPC systems grow large and complex
 - Increase of the number of components
 - Smaller chip size
- Soft error rate will grow
 - Corrupt the computations, produce incorrect output
 - Hardware-based fault detection isn't enough
 - => Algorithm-Based Fault Tolerance

Algorithm-based fault tolerance

- Software or algorithmic approaches
 - Detect the soft errors with low overhead
- Check sum for matrix vector multiplication (MVM)
 - -c(Ax) = (cA)x : c is check vector• $c = (1 \cdots 1)$
 - Low overhead for dense problems
 - Check : O(N^2) + O(k * N) ⇔ Dense MVM : <u>O(k * N^2)</u>
 - High overhead for sparse problems
 - Check : O(N) + O(k * N) ⇔ Sparse MVM : O(k * N)

Contribution

- Reduce the check overhead by using sampling technique
 - Exploiting features of sparse matrix and algorithm
 - Approximate Random, Approximate Clustering
 - Identity Conditioning, Null Conditioning
- Compared to traditional dense check, overhead is reduced up to
 - 50% in sparse matrix vector multiplication
 - 20% in iterative linear solvers

Properties of sparse algorithm

- Sparse applications have
 - Inherent structure
 - Diagonal, banded diagonal, block diagonal
 - Significant reuse
 - Iterative methods: CG, IR

Algorithmic fault detection Approximate Technique

- Exploiting inherent structure
- Approximate Random (AR)

$$1^{T}(Ax) = ((c^{T}A)x)s$$

- $-c_i = \{0,1\}$, s : scaling factor related to x
- Useful for low variance of column sum
- Approximate Clustering (AC)
 - Sampling by clustering columns

Algorithmic fault detection Conditioning

- Sparse algorithms include reuse of MVM
 - Need to set the low overhead check sum
- Identify Conditioning (IC)

$$(c^T A)x = 1^T x = \sum x$$

- Solving min |Atx 1|
- Null Conditioning (NC)
 - $-(c^{T}A)x = 0^{T}x = 0$
 - Finding a vector c by computing its smallest singular value using singular value decomposition
 - A c = σ u (σ : singular value)

Parameter space

- Fault injection
 - Into the arithmetic operation and check operation
 - Various fault models
 - Fault rates: 0, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1
- Sample rate (AR, AC)
 - -0.001, 0.01, 0.05, 0.1, 0.2, 0.3, ..., 1.0

Metrics

- F-Score
 - Used to summarize an algorithm's effectiveness
 - F-Score = 2 * TP / (2 * TP + FP + FN)
 - TP : True positives, detect the fault
 - FP: False positives, detector signals when no fault
 - FN: False negatives, not detect the fault
- Choose the best technique
 - Oracle : so that F-Score is best
 - Decision Tree
 - More practical

Results and Analysis

Experiment condition

- Datasets
 - University of Florida Sparse Matrix Collection
- Benchmarks
 - Matrix vector multiplication (MVM)
 - Iterative linear solver
 - Conjugate Gradient (CG)
 - Iterative Refinement (IR)

Evaluation MVM

- Compare each detection technique
 - AR, AC and IC show same accuracy as traditional dense check
 - NC achieved F-Score above 0.9 for less than 10%
 - Smallest singular value is large
 - Eigenvectors have many zeros
 - Faults is masked

Fig. 7. Number of problems meeting F-Score target. F-Score target=0.9, Fault Rate=1e-3, FaultModel=1

Evaluation MVM

- Compare each detection technique
 - Overhead of AR was 50% lower
 - AC was useful for lower variance pattern matrix
 - NC was useful for what contain small singular

values

Fig. 6. Runtime overhead of each technique. F-Score target=0.9, Fault Rate=1e-3, FaultModel=1

Evaluation MVM (Less frequent fault rate)

- Dense check becomes worse
 - Faults are likely to occur in the check operations
- Approximate checks work well

Fig. 9. Number of problems meeting F-Score target. F-Score target=0.9, Fault Rate=1e-6, FaultModel=1

Fig. 8. Runtime overhead of each technique. F-Score target=0.9, Fault Rate=1e-6, FaultModel=1

Evaluation MVM

- Across different F-Score targets, fault models
 - Overhead is not sensitive to these parameters

Evaluation MVM

- Across different fault rates
 - Detection is most difficult in the middle fault rate
 - Tree algorithm is resilient

Evaluation Linear solvers

- Evaluation of iterative method
 - CG and IR
- Overhead includes set up
 - Conditioning

$$Overhead = \frac{Time_sparse-Time_dense}{Time_dense}$$

- Problems used with preconditioning solvers achieved significant benefits (> 2x)
 - 5 problems for CG, 1 problem for IR

Evaluation Linear solvers

- Sparse check reduce the overhead
 - 17% less time in MVM for CG on average
 - 9% less time in total for CG

Evaluation Linear solvers with preconditioning

Sparse checks with small overhead on average

– CG-pre : - 5% ~ - 10%

– IR-pre : - 30% ~ - 40%

Conclusion

- Sparse check technique reduce the overhead of fault detection from traditional dense check exploiting the properties of sparse algorithms
 - Approximate check : AR, AC
 - Conditioning : IC, NC
 - Up to 2x over in MVM
 - Effective for the iterative solver

Discussion

- Apply sparse check technique to
 - Unstructured sparse matrix
 - Dense matrix
- Result of CG-per and IR-pre are not enough
 - Few dataset
- Not enough information about
 - Datasets
 - Experiment environment