
Big Data Analytics

徐天棋

13M54027



Starfish: A Self-tuning
System for Big Data Analytics

Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,

Fatma Bilgen Cetin, Shivnath Babu

Department of Computer Science

Duke University



OUTLINE
1. Introduction
2. MapReduce
3. Overview of Starfish
4. Just-In-Time Job Optimization
5. Workflow-Aware Scheduling
6. Optimization and Provisioning for Hadoop Workloads
7. Summary
8. Starfish’s Visualizer
9. My Impression



INTRODUCTION
Timely and cost-effective analytics over “Big Data” 
has emerged as a key ingredient for success
 business

 science

 Engineering

 government



MAD SYSTEM
• Magnetism: 

A magnetic system attracts all sources of data irrespective of issues like 
possible presence of outliers, unknown schema or lack of structure, and 
missing values that keep many useful data sources out of conventional 
data warehouses.

• Agility: 
An agile system adapts in sync with rapid data evolution.

• Depth: 
A deep system supports analytics needs that go far beyond conventional 
rollups and drilldowns to complex statistical and machine-learning 
analysis.



HADOOP’S MADness
• Copying files into the distributed filesystem is all it takes to 

get data into Hadoop.

• The MapReduce methodology is to interpret data (lazily) at 
processing time, and not (eagerly) at loading time.

• MapReduce computations in Hadoop can be expressed 
directly in programming languages

 general-purpose programming languages: Java, Python

 domain-specific languages: R

 SQL-like declarative languages: HiveQL, Pig Latin



MADDER SYSTEM
• Data-lifecycle awareness

A data-lifecycle-aware system goes beyond query execution to optimize 
the movement, storage, and processing of big data during its entire 
lifecycle.

• Elasticity
An elastic system adjusts its resource usage and operational costs to the 
workload and user requirements.

• Robustness
A robust system continues to provide service in the face of undesired 
events like hardware failures, software bugs, and data corruption.



MAPREDUCE



MAP SHUFFLE AND REDUCE

• Map：takes an input pair and produces a set of intermediate 
key/value pairs.

• Shuffle：assign each key/value pair to a reduce worker.

• Reduce：accepts an intermediate key I and a set of values 
for that key. It merges together these values to form a 
possibly smaller set of values.



STARFISH IN THE HADOOP ECOSYSTEM

Starfish is a MADDER and 
self-tuning system for 
analytics on
big data. 
An important design is to 
build Starfish on the Hadoop
stack



STARFISH GOAL

• A number of ongoing projects aim to improve Hadoop’s peak 
performance

• Regular users may rarely see performance close to this peak

• Starfish’s goal is to enable Hadoop users and applications to 
get good performance automatically throughout the data 
lifecycle in analytics; without any need on their part to 
understand and manipulate the many tuning knobs available.



EXAMPLE ANALYTICS WORKLOAD

A simple website analytics

The input data are collected by 
a personalized Web-site
like my.yahoo.com



STARFISH ARCHITECTURE



OVERVIEW OF STARFISH
• Job level Tuning

Just-in-Time Optimizer

Profiler

Sampler

• Workflow level Tuning

• Workload level Tuning

Data-flow sharing

Materialization

Reorganization



JOB LEVEL TUNING

• The behavior of a MapReduce job in Hadoop is controlled by 
the settings of more than 190 configuration parameters.

• Good settings for these parameters depend on job, data, and 
cluster characteristics.

• The optimizer takes the help of the Profiler and the Sampler.



PROFILER

• The Profiler uses a technique called dynamic 
instrumentation to learn performance models, called 
job profiles



SAMPLER

• The Sampler collects statistics efficiently about the input, 
intermediate, and output key-value spaces of a MapReduce
job

• A unique feature of the Sampler is that it can sample the 
execution of a MapReduce job in order to enable the Profiler 
to collect approximate job profiles at a fraction of the full job 
execution cost.



WORK-FLOWLEVEL TUNING
• some critical and unanticipated interactions between the MapReduce

task scheduler and the underlying distributed filesystem.

• moving the computation to the data

the data layout across nodes in the cluster constrains how tasks can 
be scheduled

• Avoiding cascading reexecution under node failure or data corruption

• Ensuring power proportional computing

• Adapting to imbalance in load or cost of energy across geographic regions 
and time at the datacenter level.



WORKLOAD-LEVEL TUNING

• Data-flow sharing
a single MapReduce job performs computations for multiple and 
potentially different logical nodes belonging to the same or different 
workflows.

• Materialization
intermediate data in a workflow is stored for later reuse in the same or 
different workflows. Effective use of materialization has to consider the 
cost of materialization and its potential to avoid cascading reexecution of 
tasks under node failure or data corruption.

• Reorganization
new data layouts and storage engines are chosen automatically and 
transparently to store intermediate data so that downstream jobs in the 
same or different workflows can be executed very efficiently.



LASTWORD
 Starfish’s Language for Workloads and Data

 Lastword is not a language that humans will have to interface with 
directly.

 Starfish provides language translators to automatically convert 
workloads specified in these higher-level languages to Lastword.

 physical workflows, logical workflows, hybrid workflows

 Support for expressing metadata along with the tasks for execution

 Lastword enables Starfish to be used as a recommendation engine in 
these environments.



• VS Rules of Thumb for Parameter Tuning

JUST-IN-TIME JOB OPTIMIZATION

io.sort.mb
io.sort.record.percent

=0.9 times the total 
number of reduce slots

mapred.reduce.tasks

=
16

16−𝑎𝑣𝑔_𝑟𝑒𝑐𝑜𝑑𝑒_𝑠𝑖𝑧𝑒



RESPONSE SURFACES
the impact of various job configuration parameter settings on the 
running time of two MapReduce programs in Hadoop.



THREE VIEWS OF JOB PROFILE

• Timings view

 Giving the breakdown of how wallclock time was spent in the various 
subphases.

• Data-flow view
 Giving the amount of data processed in terms of bytes and number of records 

during the various subphases.

• Resource-level view
 Capturing the usage trends of CPU, memory, I/O, and network resources 

during the various subphases of the job’s execution.



COMPARISON OF TWO SETTING
Combiner in Job A 
was processing an 
extremely large 
number of records,
causing high CPU 
contention.

On the other hand, 
the Combiner 
drastically decreases 
the amount
of intermediate data



PREDICTING JOB PERFORMANCE
• Using What-if Engine to predict the performance

• 4 Inputs to generate virtual job profile

1. The job profile generated for J by the Profiler

2. The new setting S of the job configuration parameters using which 
Job J will be run

3. The size, layout, and compression information of the input dataset 
on which Job J will be run

4. The cluster setup and resource allocation that will be used to run 
Job J



OVERHEAD AND RELATIVE ERROR
The main challenges is in developing an efficient strategy to search through the high dimensional

space of parameter settings.



WORKFLOW-AWARE 
SCHEDULING

Problem

•Unbalanced Data Layouts

•Collocating two or more datasets

Solution

•New block placement policies



UNBALANCED DATA LAYOUT



UNBALANCED DATA LAYOUT

•A number of causes can lead to unbalanced data 
layouts rapidly or over time: 
Skewed data

Scheduling of tasks in a data-layout-unaware manner as done by 
the Hadoop schedulers available today

Addition or dropping of nodes without running costly data 
rebalancing operations



DILEMMA FOR DATA-LOCALITY-AWARE
SCHEDULERS

Performance degradation due 
to reduced parallelism, and worse, 
making the data layout further 
unbalanced because new outputs 
will go to the over-utilized nodes.

Non-data-local scheduling 
incurs the overhead of data 
movement.



2x SLOWDOWN ON UNBALANCED 
LAYOUT

a partitioning MapReduce job that 
partitions a 100GB TPC-H Lineitem
table into four partitions
relevant to downstream workflow 
nodes.

The data properties are such that one 
partition is much larger than the 
others.

performance degradation due to 
reduced parallelism



PARTITION CREATION TIME
with a replication factor of two for the partitions.

HDFS places the second replica of each block of the 
partitions on a randomly-chosen node.

The overall layout is still unbalanced, but the time to 
sort
the partitions improved significantly because the 
second copy of
the data is spread out over the cluster



COLLOCATING TWO OR MORE DATASETS

•HDFS does not provide the ability to collocate 
the joining partitions, so a join job run in Hadoop
will have to do non-data-local reads for one of its 
inputs



NEW BLOCK PLACEMENT POLICY

A new block placement policy in HDFS 
that enables collocation of two or more 
datasets.

The new policy gives a 22% 
improvement in the running time of a 
partition-wise join job by collocating 
the joining partitions.



NEED FOR A WORKFLOW-AWARE SCHEDULER

• A Workflow-aware Scheduler that can run jobs in a workflow 
such that the overall performance of the workflow is 
optimized.

• Workflow performance can be measured in terms of running 
time, resource utilization in the Hadoop cluster, and 
robustness to failure and transient issues(reacting to the 
slowdown of a node due to temporary resource contention)



ANALYZING RELATIONSHIPS

•What parts of the data output by a job are used 
by downstream jobs in the workflow?

•What is the unit of data-level parallelism in each 
job that reads the data output by a job?



EXAMPLE
1) File1 forms the input to Job C1, while File1 and 
File2 form the input to Job C2. Since File3 is not used 
by any of the downstream jobs, a Workflow-aware 
Scheduler can configure Job P to avoid generating 
File3.

2) For File2 all blocks in the file should be placed on 
the same node to ensure data-local computation

For File1 The data-level parallelism is at the block-
level in Job C1, but at the file-level in Job C2.to 
spread File1’s blocks across the nodes so that C1’s 
maptasks can run in parallel across the cluster. 
However, the optimal layout of File1 from Job C2’s 
perspective is to place all blocks on the same node.



CHOICES FOR DATA LAYOUT

•What block placement policy to use in the distributed 
filesystem for the output file of a job?
Round Robin
local write

•How many replicas to store—called the replication 
factor—for the blocks of a file?
•What size to use for blocks of a file?
• Should a job’s output files be compressed for storage?



WHAT-IF QUESTIONS

•What is the expected running time of Job P if the Round 
Robin block placement policy is used for P’s output files?

•What will the new data layout in the cluster be if the 
Round Robin block placement policy is used for P’s 
output files?

•What is the expected running time of Job C1 (C2) if its 
input data layout is the one in the answer to Question 2?



WHAT-IF QUESTIONS

• What are the expected running times of Jobs C1 and C2 if 
they are scheduled concurrently when Job P completes?

• Given the Local Write block placement policy and a 
replication factor of 1 for Job P’s output, what is the 
expected increase in the running time of Job C1 if one node 
in the cluster were to fail during C1’s execution?



PERFORMANCE COMPARISON
the local I/O within a node becomes the 
bottleneck before the parallel writes of 
data blocks to other storage nodes over 
the network.

(b)the performance of the sort job for 
different layouts of the output of the 
partition job.
the Round Robin policy spreads the blocks 
over the cluster so that maximum data-
level parallelism of sort processing can be 
achieved while performing data-local 
computation.



OPTIMIZATION AND PROVISIONING FOR 
HADOOP WORKLOADS

•Workload Optimizer
 Represents the workload as a directed graph and a graph-to-

graph transformations.

 Use the What-if Engine to do a cost-based estimation of 
whether a graph-to-graph transformation will improve 
performance.

•Elastisizer
 Money

 Time



Jumbo operator

• SPA ：
Select-Project-Aggregate expression over the join 
The results IV, V, and VI can each be represented as a 

Select-Project-Aggregate (SPA) expression over the join.

• Jumbo operator：
Can process any number of logical SPA workflow nodes over the 

same table in a single MapReduce job

• Without the Jumbo operator, each SPA node will have to be 
processed as a separate job.



EXPERIMENTAL RESULT

Figure 13: Processing multiple SPA workflow nodes on the
same input dataset

results I, II, IV, and V. These 
four workflows have filter 
conditions on the age 
attribute in the Users 
dataset.

Partition pruning improves 
the performance of all 
MapReduce jobs in our 
experiment. At the same 
time, partition pruning 
decreases the 
performance benefits 
provided by the Jumbo 
operator.



Elastisizer
• Users can now leverage pay-as-you-go resources on the cloud to meet 

their analytics needs.

• The cluster can be released when the workflow completes, and the 
user pays for the resources used.

• Users have to specify the number and type of EC2 nodes (from among 
10+ types) as well as whether to copy data from S3 into the in-cluster 
HDFS.

• One of the goals of Starfish’s Elastisizer is to automatically determine 
the best cluster and Hadoop configurations to process a given 
workload subject to user-specified goals



WORKLOAD PERFORMANCE

Figure 14: Workload performance under various cluster and Hadoop configurations on Amazon Elastic MapReduce



PERFORMANCE & COSTS



EXAMPLE

• Minimize the monetary cost incurred to run the workload, subject to 
a maximum tolerable workload completion time.

• If the user wants to minimize costs subject to a completion time of 30 
minutes, then the Elastisizer should recommend a cluster of four 
m1.large EC2 nodes.

• If the user wants to minimize costs, then four m1.small nodes are 
best. However, the Elastisizer can suggest that by paying just 20% 
more, the completion time can be reduced by 2.6x.



SUMMARY
• Starfish fills a different void by enabling Hadoop users and 

applications to get good performance automatically throughout 
the data lifecycle in analytics; without any need to understand 
and manipulate it.

• The novelty in Starfish’s approach comes from how it focuses 
simultaneously on different workload granularities—overall 
workload, workflows, and jobs as well as across various decision 
points—provisioning, optimization, scheduling, and data layout.



TIMELINE VIEWS



DATA-FLOW VIEWS

Video mode
allows users to play back 

a job execution from the 
past.



PROFILE VIEWS



MY IMPRESSION

PROS CONS

 A good idea to help these who 
are not familiar with Hadoop.

 Focus on the overall 
performance not the peak 
performance.

Dynamic performance tuning 
on run time.

X Only typical job performance,
haven’t average performance for 
tens or hundreds jobs.

X No details about starfish’s 
overhead

X All example are on one 
environment.



THANK YOU


