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Abstract—Supercomputers generate vast amounts of data,
typically organized into large directory hierarchies on parallel file
systems. While the supercomputing applications are parallel, the
tools used to process them requiring complete directory traver-
sals, are typically serial. We present an algorithm framework and
three fully distributed algorithms for traversing large parallel
file systems, and performing file operations in parallel. The first
algorithm introduces a randomized work-stealing scheduler; the
second improves the first with proximity-awareness; and the
third improves upon the second by using a hybrid approach.
We have tested our implementation on Cielo, a 1.37 petaflop
supercomputer at the Los Alamos National Laboratory and its 7
petabyte file system. Test results show that our algorithms execute
orders of magnitude faster than state-of-the-art algorithms while
achieving ideal load balancing and low communication cost. We
present performance insights from the use of our algorithms
in production systems at LANL, performing daily file system
operations.
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I. I NTRODUCTION

The amount of scientific data produced today has been
keeping pace with the increases in disk/memory capacities and
densities. On large compute clusters consisting of hundreds of
thousands of processors, applications easily generate millions
of files per job. Scientists often use sophisticated tools to
write applications that read, compute, and store these data,
in parallel, on large distributed storage systems. However, the
tools and algorithms used to traverse file systems to archive
the data to long term reliable storage, or post-process the
data for visualization or statistical analysis, are often serial,
making data archiving or searching time consuming. The few
tools that exist for parallel processing [1] and archiving [2]
use centralized parallel algorithms for load balancing and
work distribution, leading to unnecessarily high communi-
cation overhead. Traversal of large file trees in parallel is a
common problem encountered in parallel storage systems, but
has received limited attention.

Problem Motivation: There are numerous motivational
examples for the parallel tree traversal/walk problem. One
such example is the problem of copying a large file tree
to long term archival storage. In a naive implementation, a
single client could serially copy each file, under-utilizing the
parallelism available. A simple parallel implementation may
use a pool of worker processes and a master process, where
the master process dispatches tasks to the worker processes.
The MapReduce framework [3] designed by Google uses this

master and slave strategy. In the MapReduce architecture, the
file tree operations tasks given to slave processes could be
copying a single file, or a segment of a file, allowing large
files to be copied by multiple workers.

While parallel, this centralized implementation suffers from
communication overheads. The master process needs to keep
track of which worker processes are busy, and what they
are working on. Each new task requires a minimum of two
messages – the dispatch of work unit from the master to a
slave, and the reply from the slave to the master. Also, the
master process must maintain a global list of tasks to be
performed. For very large file trees, such a list can outgrow
the memory available to the master process.

Another example is the checkpoint and restart facility in
large parallel applications. Parallel applications run across
hundreds or thousands of distributed processors in a parallel
system. With the number of components in such a system
rapidly increasing, the probability of a hardware component
failure is also increasing rapidly [4]. Checkpointing and restart
facilities are being used widely to help parallel applications
improve fault tolerance in the event of hardware/software
failures. In addition to allowing an application to restart
from a checkpoint, this data can also serve as application
output. Searching, indexing, and processing this output from
very large compute jobs can be prohibitively expensive for
serial/naive parallel implementations. Our algorithms are es-
pecially geared towards performing these actions with little
overhead.

Another example is file tree traversal (walk). A serial file
tree traversal mechanism is implemented as part of the Linux
kernel in accordance to a POSIX specification [5]. A user
provides a function to be called back for each node in the tree,
and then calls the functionftw(path) [5] to begin a traversal
on a given path. The file system tree rooted atpath is then
explored in a pre-order traversal. In addition to the call back,
metadata about each node is supplied to the user provided
call back function to avoid performing an additional metadata
lookup for the same file. This solution is adequate for normal
sized directories where serial performance is satisfactory, but
the serial nature of the Linux file tree walk severely limits
the speed of directory traversal. Moreover, there is a serious
problem traversing deep file trees.

An obvious improvement to the serial file tree walk is
a parallelized version. At Los Alamos National Laboratory
(LANL), a parallel file tree walk algorithm has been developed
in-house and is used for gathering metadata on very large
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parallel file systems [6]. This algorithm was a first attempt at
large file tree exploration in parallel, and showed a significant
speedup over the serial algorithm. It uses a centralized task
distribution paradigm with a master process for control and
slave processes to perform individual node explorations. It
also allows multiple directories to be explored simultaneously
by multiple worker processes. However, the centralized mas-
ter/slave algorithm requires communication between the slave
processes and the master for each task assigned by the master
to a given slave. This occurs first when the task is assigned,
and then again when the work is returned to the master. As
we will show in Section II, this overhead is significant.This
served as our motivation to study the problem of parallel
file tree walk and design/develop algorithm(s) to improve
not only the operating time, but also reduce the message
complexity.

In this paper, we propose an algorithm framework and
develop three efficient algorithms, each of which can be
used in different scenarios. In our framework, we obtain the
improvement in running time and message complexity by dis-
pensing with the synchronization requirement and by avoiding
a centralized control process altogether. Our framework is a
fully distributed framework for workload distribution, applied
specifically to the problem of file tree exploration. We use a
randomizedwork stealing scheduler [7] to efficiently balance
workload between the worker processes. This mechanism is
popularly termed as work stealing because idle workers ‘steal’
work from other processes which have pending work in their
queue [7]. Our algorithms show a large speedup over the
centralized parallel algorithm, with drastically reduced com-
munication overhead. This reduced communication overhead
(and complete lack of collective communication) allow our
algorithms to scale much better than the previous solution.
For instance, when run on a file tree consisting of100 million
files, our algorithmsexchange two orders of magnitude less
bytes than a centralized parallel algorithm and take less than
a fourth of the time to run on an average with thesame
number of processes. We also perform comparisons among our
algorithms and identify their suitability for different situations.

To our best knowledge, our proposed framework and the
algorithms are a first, and a novel, attempt in the litera-
ture to perform truly distributed operations in large parallel
file systems without the need for explicit synchronization.
Our solution can find application in many large scale data
storage systems and provide significant speed-ups at reduced
communication costs.In fact, it is currently under use in
production systems at LANL.The results presented in this
paper are obtained from the runs of our algorithms in these
production settings. As our solution has potentially wide-
spread usage and draws on several areas of High Performance
Computing for concepts. We begin by describing file system
metadata storage techniques, the serial file traversal algorithm,
works in parallel file tree traversal at LANL, and relevant
graph exploration algorithms in the related works section,
Section II. Then, we describe the parallel file tree traversal,
and other relevant concepts that will help understand our

framework better, in the Background section, Section III.
We present our framework and the three related algorithms,
and improvements in Section IV. We present the empirical
results of our experiments on large scale systems at LANL in
Section V. Finally, we conclude our paper in Section VI.

II. RELATED WORK

File systems are organized into trees, which can be traversed
serially using well-known algorithms, such as Breadth First
Search (BFS) or Depth First Search (DFS) [8]. The super-
computing research community has expended significant re-
search efforts in designing efficient parallel graph exploration
techniques, a few notable ones being [9]–[11]. Many existing
graph algorithms have been studied and modified with success
to exploit parallelism [12]. For instance, a typical parallel
graph search and exploration algorithm used widely is the
Depth-First Branch and Bound (DFBB) [13] algorithm. In
the DFBB algorithm, parts of the search space (subtrees) that
do not contain an optimal solution are eliminated by using
heuristical branch and bound [14]. Breadth First Search (BFS)
is parallelized by maintaining a global frontier of unvisited
vertices [15]. During each iteration, every process atomically
acquires one vertex from the frontier. It then explores the
vertex to discover the vertex’s neighbors. The process then
adds the unexplored neighbors of that vertex (if any) to the
frontier of unexplored vertices. Between explorations, one or
more processes need to take the list of unexplored vertices and
reduce it to aset to eliminate repeats. However, all these par-
allel implementations require process synchronizations, which
becomes very costly as the number of parallel processes is
increased [16]. In normal BFS, there is a possibility of having
multiple paths to a given vertex. For a tree with a branching
factor b, and a depthd the asymptotic time complexity for
BFS is O(bd) if multiple paths are allowed. These are some
of the challenges in parallel graph exploration.

However, parallel file tree exploration is different from
parallel graph exploration on both fronts. The fact that in a
parallel file tree traversal every node in the tree must be visited
makes the problem unique as we cannot exclude or ignore any
subtree within the file tree. This is in contrast to other parallel
tree or graph algorithms. Moreover, there is no express need
for synchronization of the slave processes, as we will show in
this paper. Thus there is scope for major run time speed-ups.
In essence, the algorithms for parallel graph exploration do not
apply to parallel file tree exploration, because of these major
differences, among others. The problem of exploring a file
tree as a graph differs from conventional graph exploration
in an important way – it’s representation. A graph can be
represented efficiently, however the biggest impediment for
file tree exploration is the that in order to construct the graph
representation, complete graph information must be knowna
priori . Moreover, the cost of determining the neighbors of
a vertex in a standard network graph in a serial setting is
generally attributable to the cost of the data structures used
to represent the graph. In contrast, for a parallel file tree this
cost is affected by external factors, such as the network hop



count, the type of parallel file system, network bandwidth,
metadata storage paradigm, file system attribute caching and
other variables. This makes the task of optimizing file tree
traversal more complex.

However, parallel file tree exploration has not received much
attention in the community.Our work is a novel attempt to fill
this void.

A. Filesystem Metadata

Smaller, serial file systems can reduce the cost of attribute
gathering (a requirement for any other file operation) by in-
dexing directories for fast traversal. In Linux ext3 file systems,
HTrees are used for directory indexing [17]. HTrees are based
on B-Trees, except that the maximum depth is limited. The
cost for searching a B-Tree is the same as that of searching a
binary search tree,O(log n), but under the assumption that the
directory structure is indexed and in RAM. This requirement
makes serial file systems unsuitable for large supercomputing
applications. The obvious answer is to use large parallel file
systems.

One popular open source file system is Lustre [18]. Lustre
stores all file system metadata in a single high performance
data store. This effectively converges the data path for gath-
ering attributes to a single server. However, many Lustre
metadata optimizations have been implemented to maintain
high throughput from the metadata server, so that parallel
processes can make use of it. Despite using an optimized
single metadata server, the problem of traversing file trees
in parallel is still applicable to Lustre. This is because, once
a process has credentials for reading or writing a file, the
metadata server is no longer in the data path. A credentialed
Lustre client communicates directly with storage devices to
speed-up the parallel file operations (until new credentials are
needed).

Another state-of-the-art parallel file system, Ceph [19], uses
a novel approach to metadata. Ceph employs a scheme known
as Dynamic Subtree Partitioning to distribute metadata. Ceph
dynamically stores file system subtree attributes on individual
metadata servers, unless certain criteria are met. The notion
of a subtree’s popularity is measured and stored for a short
amount of time. Using this information, Ceph can remap a
subtree’s attributes to multiple metadata servers if the work-
load warrants it. Ceph also allows for proximity optimizations
of the file subtree’s attributes, stored across multiple metadata
servers.

The current file system in production at LANL is a state-
of-the-art proprietary parallel file system called Panasas [20].
Panasas distributes metadata for files as file components across
the storage system for performance and redundancy. These
metadata storing components can be accessed in parallel, and
the Panasas file systems has implemented many optimizations
for fast metadata access.

We note that our framework for distributed parallel file op-
erations can be plugged into any existing parallel file systems
and improve their performance in indexing searches, by virtue
of the enhanced parallelism provided. As we will show in

the empirical results section, our algorithms require25% of
the time on an average to perform indexing in comparison to
existing techniques.

B. File Tree Walk

We know that serial file systems are not useful in the
supercomputing environment. So let’s look at parallel file tree
walk.

Algorithm 1 Centralized Parallel File Tree Walk

1: S = ∅ for slave processes,root for the master
2: if processor rank == 0 then
3: i = 0
4: while |S| > 0 do
5: Receive Message from Processorj

6: if Message is a work requestthen
7: p = S.dequeue()
8: Sendp to j

9: else
10: S.queue(Message) {Work to be processed}
11: end if
12: end while
13: else
14: repeat
15: if |S| = 0 then
16: Send work request to Processor0
17: Receive Message from Processor0 into path

18: end if
19: if path is termination sentinelthen
20: exit
21: end if
22: if path is a file then
23: process(file)
24: else
25: S = ∅
26: for all child in path.children() do
27: S.queue(child)
28: end for
29: SendS to Processor0
30: end if
31: until path == ∅
32: end if

Centralized Parallel File Tree Walk: The first centralized
parallel (CP) file tree traversal algorithm was developed in-
house at LANL (2007) and used a dynamic centralized load
balancing technique [8]. For the benefit of the reader Algo-
rithm 1 presents the CP algorithm. Line 1 initializes the work
queueS to be empty for all slave processes, androot as the
master. The master process (Process0) executes Lines 2-12,
while the slaves execute Lines 14-31. The master enters a
while loop in Line 4, and stays in the loop untilS is empty.
The basic idea of CP is the following: When the master process
receives a message from a slave processj (Line 5). If j

is requesting work, then a work element is removed from
the queue and sent back toj (Lines 6-8). Otherwise,j has
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Fig. 1. Centralized Parallel Tree Walk: Communication Cost

returned work results (directories and files) that need to be to
be added to the queue (Line 10). The slave processes begin
their execution in Line 14, entering a repeat until loop. A slave
checks (Line 15) to see if there is work to do, if not, the slave
requests work from the master (Lines 16-17). After receiving
a response, the slave checks for a termination sentinel from
the master (Lines 19-20). Otherwise, the master has sent a
path to explore. The user provided callback function is called
in Line 23 to perform any necessary work on the path if it is
a file. Lines 25 through 29 determine the descendants ofpath

(if any), and send that information back to the master process.
In CP, the master process distributes work units to each of

the worker processes, one at a time. Each worker performs
the work assigned and sends the results back to the master
process (which may contain new work to be added to the
work queue). Until the queue is empty the master process
meters out a portion of work to each slave process, and then
waits for a response from each one, which requires process
synchronization. Additionally, a minimum of two network
transfers is required for every item in the work queue, which
could prove to be very time consuming for large diameter
networks. The actual implementation of this algorithm assigns
certain tasks only to certain slaves. For example, in the LANL
implementation only one work process from the slave pool
is used to read the contents of directories. This causes a
disproportionate amount of work to be done by one slave
process in the event that large directories are present in the
input.

Fig. 1 shows the total number of bytes exchanged between
different process ranks. The results are output from an instru-
mented file tree walk using CP. This test was performed on a
supercomputer at the Los Alamos National Laboratory using a
471 TB Panasas [20] file system consisting of approximately
6.5 million files. The graph is a heat map showing the
total volume of bytes exchanged between each process pair.
The color spectrum goes from white, which represents zero
bytes exchange, to red, which represents1.6 × 109 bytes
exchange. The vertical and horizontal axes represent the MPI
rank numbers of the processes (total of30 ranks). A square,
for example, the square at (1, 0) represents the number of
bytes sent from Rank1 to Rank 0 (master) for the entire
job. Observe that communication strictly occurs between the

master process and slaves, but never between two slaves. The
heat map clearly demonstrates inefficient use of the network
interconnects, which in turn creates a performance bottleneck
at the master process.

For every leaf node in the file tree, one communication
occurs between the master and a slave process, namely trans-
mission of the results from the file operation. However, for
every internal node (directory) in the file tree, two communi-
cations occur – the work from the master to the slave process
and the results returned by the slave. As we will show later,
this leads to an asymptotic network cost ofO(n2), wheren

is the message length. The first component is the network
latency incurred by every transfer. The second component is
the worst case message size for a process which operates on
a directory containingn − 1 entries in it. This would occur
in the case where the file system contained one directory with
n−1 files in it. The quantity is multiplied by two because each
operation requires two transfers, from master to slave and then
back to the master. Since the file system is random access, all
operations done by slave processes are equivalent in cost.

III. B UILDING BLOCKS OFOUR FRAMEWORK

A. Parallel Tree Traversal

Our goal in this paper is to design a parallel algorithm for
parallel file systems tree exploration, in which each node in
the tree is visited exactly once. Additionally, we seek an ideal
load balance, with equitable load-distribution, where all the
parallel processes performs the same amount of work. In the
case of a file tree, the work is visiting nodes in the tree, and
performing any legal file operations on each node. Operations
on one node are mutually independent from those on other
nodes – a fact we exploit in the design of our algorithms.
There is a provision in most file systems to use links (symlinks,
hardlinks, etc.). Links can cause cycles in the file tree, which
would result in a traversal algorithm going into an infinite loop.
To prevent this from happening, we ignore links in the file tree
during traversal. We note that the algorithms we propose in
the paper will duplicate effort proportional to the number of
hardlinks. However, in real world production systems, such as
in LANL (and others), for simplicity, the parallel filesystems
are generally not POSIX compliant, that is, they do not use
hard links, inodes, and symlinks. So, our assumption holds.

We note that this problem is embarrassingly parallel. That
is to say, there are no dependencies between the units of work
(subtrees) to be processed. This allows us to ignore the order in
which items are processed. Now we describe in detail some of
the concepts that form the bare-bones of our framework. This
detail description here would facilitate better understanding of
our algorithms and the empirical results.

B. Inter-Process Communication without Global Synchroniza-
tion

We seek to visit all nodes within a graph (in this case a
tree) in parallel, as quickly as possible. One way to achieve
this efficiently is by avoiding global process synchronization.
Any rendezvous between all processes in a parallel job must
be coordinated by way of communication, and this is known



to be costly [16]. We make the distinction between pair-wise
communication, and collective communication.

Pair-wise communication refers to a message transfer that
occurs between two processes. Note that one transfer may be
referred to as one message, but if a reliable network protocol
is used that single message may require more than one packet,
which can cause even a single message to incur network
latency cost more than once. Communication may be blocking
(synchronous), or non-blocking (asynchronous). We use non-
blocking communication semantics, thus we avoid processes
being blocked. One process may initiate a communication
request and continue doing useful work, periodically checking
to see if that request has been answered. Likewise, while a
process is processing work, it can periodically check for out-
standing communications from other processes. To accomplish
this, we use the asynchronous messaging mechanism provided
by Message Passing Interface (MPI) [21].

We define a collective communication as a message ex-
change which is meant for all processes. This type of
communication is normally used due to an implicit order
dependency in the computation, such as a need to find a
minimum or maximum value of a variable across all processes
synchronously. In other words, collective communications are
a form of synchronization. Our approach avoids collective
communication, using pair-wise communication exclusively.
Additionally, we benefit from the pair-wise communication
being non-blocking.

C. Work Depth Model

To compare the complexity of our parallel algorithm with
existing work, we use the Work Depth (WD) model’s [22] no-
tion of complexity for parallel computation, which is typically
used for Parallel Random Access Machines (PRAM) [23].
A PRAM model is used as an analogous way to describe
parallel machines without the need for communication or
synchronization so long as the memory access performed by
the processes obeys the semantics described in the PRAM
model. In the WD model, the workW (n), where the input size
is n, is defined as the number of operations to be executed,
and the depthD(n) is the greatest number of sequential
dependencies occurring in the computation. Brentet al. [24]
have shown that if we are givenW (n) andD(n), we can place
reasonable bounds on the running time forp processors [24].
They also showed that the running timeT can be bound
as W

P
≤ T < W

P
+ D. The parallelism of an algorithm is

then defined asP = W
D

. Additionally, we use the simple
model for network cost:C(n) = α + n ∗ β whereα is the
network latency incurred for every network transfer,β is the
average transmission cost for one network unit, andn is the
message length (in units). We note that the work is fixed as
W (n) = O(n) for all of our parallel algorithms, since we
must visit every node in the tree exactly once. The areas for
improvement therefore are the network costC(n) and the
depthD(n) of the algorithms. Note that the depthD(n) of the
CP algorithm isn

p
for p processes operating onn tree nodes,

since the master process distributes the work evenly among
the slaves.

We also make the assumption that the file system tree is
random access, that is, the cost for querying the neighbors of
any given vertices are equivalent. Modern parallel file systems
do perform caching, but we are interested in very large file
trees that do not fit in any file system cache. In fact, we are
interested in file trees that do not even fit in the memory of a
single machine.

IV. A F RAMEWORK FORDISTRIBUTED PARALLEL FILE

SYSTEM TRAVERSAL

We first present the framework on which the three algo-
rithms to be presented in this section are based. The framework
is essentially a set of design principles that we follow.

A. Design Principles for the Framework

Parallelism via the Message Passing Interface:We im-
plement our algorithms using the Message Passing Interface
(MPI) [21] standard for parallelism. MPI allows parallel
processes to communicate within an MPI Communicator,
which can be created dynamically and have multiple processes
associated. Each process has a unique integer identifier, its
MPI rank, within a given communicator. A rank can then be
used to uniquely identify processes for communication [21].

Anyone-Asks-Anyone:We create a distributed parallel al-
gorithm framework by using the principle that there is no
master process, all processes in the system are equal, and
any process can ask any other process for work. The file tree
exploration does start at a single process, in our case it is
processRank 0 termed as theroot process. But once the work
gets distributed, a process can ask any other process for work.
The only centralized operation is termination detection, which
is centralized for the sake of efficiency. The root process is
responsible for initiating the termination procedure (via token
generation) and detection. More on this follows. Of course, in
a large system it is inherently wasteful for a process to ask
another process, which is several hops away, for work. Hence,
it makes better sense in terms of latency and communication
cost for a process to execute an expanding search for requests
– ask direct neighbors, ask neighbors neighbors, and so on.

Light Weight Processes v/s Single Processes:Given the
I/O bound nature of the tree walk, it makes sense for having
multiple threads/processes on each compute node. However,
if all co-located threads/processes ask each other for work,
don’t find any, and all send work requests over the network, it
is inherently wasteful. Instead, one of them can be designated
to seek work from remote processes, after which all co-located
threads/processes can share the work.

Random Splitting v/s Equal Splitting: When a process
Pi receives a request for work from another processPj , if Pi

has a queue of pending tasks to complete (directories/files to
explore), it can providePj a part of its pending tasks, this is
termedqueue splitting. ProcessPi may split the queue in equal
halves or into two unequal parts randomly and assign one of
the parts toPj . Unless a task in the queue is the exploration of



a particular file, that is, it is a directory instead, then process
Pi has no idea how much time it would take to explore the
task. This is because it is not possible to know the nature of
the descendants of a directory (whether they are files only,
directories and files, or directories) and the depth of the sub-
tree rooted at the directory without exploring it. Due to the
unbalanced nature of file trees, an even split may lead to sub-
optimal load balancing. For example, ifPi always splits the
queue equally (non-cognizant of the next level), it may lead to
Pi giving away a large proportion of leaf nodes, while keeping
its portion of the queue filled with nodes representing large
subtrees – an unbalanced split. There is a possibility that such
a split happens often, and will result inPi exploring a larger
portion of the internal nodes in comparison to its requesting
processes. This not only causes inequitable load balancing, but
also causes more network traffic as the requesting processes
end up sending out more work requests. It is easy to see that
the network cost will beO(n2).

For even work distribution, queue splits may occur many
times; the challenge is to ensure an even balance with the least
number of splits. In our algorithms, splits are not globally
synchronized, only the work exchange between a pair of
processes is locally synchronized. Asymptotically, the queue
can be split at mostO(n) times for n elements. This is
because for every split, the splitting process will always keep
at least one element to process. No matter how the work
is distributed amongst the processes, the pending work of a
process decreases by at least one unit after a queue split. This
is true for all processes, thus ensuring termination.

If we assume that there arep processes, and each process
consumes one work unit (initiallyn units), between two
consecutive splits of its queue, then it can be proved that
the work to be done by a process decreases by at least one
for each queue split. This in turn implies a reduction byp

units overp processes after their corresponding queue splits.
Note that the splits do not have to synchronized. Givenp

processes consumingn elements (at leastp at a time), the
depth is then by definition:D(n) = n

p
. The communication

complexity is dependent on the queue splitting – every queue
split involved a request and a reply. In the worst case, where a
queue splitsn−1 times, we show now that the communication
cost is C(n) = O(n2). As we have noted, the network
cost for a message of sizen units is C(n) = α + n ∗ β

(Section III-C). Since the queue decreases by at least one
element for every split, the messages becomes smaller by at
least one element. Each exchange consists of a work request
of size one unit, and a response of size from{n − 1, . . . , 1}
units, with a total cost ofCa = {C(1) + C(n − 1)} +
{C(1) + C(n − 2)} + · · · + {C(1) + C(1)}. Expanding
the formula and combining all theC(1) terms, we have
Ca = n · (α + β) + {α + (n− 1) · β}+ · · ·+ {α + 1 · β}, that
is, Ca = n · (α + β) + n · α + β

2
· (n− 1) · (n− 2). It is easy

to see thatCa = O(n2).
Also note that if the queue splitsn− 1 times, each process

could send a maximum ofp − 2 non-fruitful work requests
to other processes. This increases the total network cost by

adding one request and one response top other processes for
each of then − 1 queue splitsCb = 2 · (n − 1) · p · (p − 2) ·
C(1) = O(n · p2), asp << n. Thus, the total network cost is
Ctotal = Ca + Cb = O(n2). However, this worst case is rare,
occurring if the file system is a directory containing only files,
and during each split all but one file is sent to a requesting
process.

Given the above analysis, and in the absence of specific
information about fan-outs and depths of filesystem tree, we
believe that random splitting may be a better technique than
equal splitting in balancing amortized load [25]. We follow
this line of thought and use random splitting; empirical studies
(Section V) validate this line of reasoning as well.

Termination Detection: Termination detection in a parallel
distributed algorithm is an important aspect. In our algorithms,
termination detection is also distributed, and is achieved using
Dijkstra’s Token Algorithm [26]. We note that in order for
the Dijkstra’s algorithm to terminate successfully, links (back
edges, such as symlinks and hardlinks) must not be explored –
they would cause infinite work loops. We utilize this Dijkstra’s
algorithm for all three of the algorithms presented in this work.
Dijkstra’s algorithm can be implemented very simply, using
the following rules [26]: all processes are logically ordered
(numerical order is used for convenience); each process can be
colored black or white, every process starts as white; a token
can be passed between processes, and the token is also colored
black or white; when the root process (Rank 0) is idle, it
generates a white token and sends it to the next process (Rank
1); any time a process sends work to a process with a lesser
rank it colors itself black; if a black process receives a token
then it colors the token black, colors itself white, and then
forwards the token; if a white process receives a token then it
forwards the token unchanged, tokens are only forwarded by
a process when it is idle; and termination is detected when the
root process receives back a white token.

We present our three algorithms now. The processes in
the presented algorithms perform random splitting. We do
not present the equal splitting variants, but note that the
splitting procedure can be conceptually thought of as a plug-
and-play module, with random replaced by equal. The three
algorithms we present in this section, combine one or more of
the functionalities mentioned above in their design. Now we
present each of them in order.

B. Distributed Random Queue Splitting

Our Distributed Random Queue Splitting (DRQS) algorithm
is presented in Algorithm 2. Except for the purposes of termi-
nation initialization and detection, all processes are logically
equivalent. There is no centralized master process, and no
centralized work queue. Instead, each process maintains its
own local work queue. One of the processes (Rank 0) contains
the root of the parallel file system, that is where we start. In
Line 1, the queue is initialized empty for all processes, except
for the root process (Rank 0), which has only one item in it
initially – the root path to be explored.
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Fig. 2. Co-located processes have lower communication cost in comparison
with non co-located processes

After initialization, every process executes a work loop in
Lines 3-13. The execution of this work loop is not synchro-
nized between processes. For each iteration of the loop, a
process begins by checking for outstanding work requests from
other processes in Line 4. If there are outstanding requests, it
performs one of two things. If the process’s queue is empty,
it sends a negative response to each requester. Alternatively,
if the process’s queue is not empty it then splits its queue
randomly and sends a portion of it to each requesting process.
The next step in each iteration is also dependent on the local
work queue. If it is non empty (condition checked in Line 5),
the process dequeues one item from the queue and processes
it (Line 8). Note that processing the item may add more items
to the work queue if that work item is a directory. If the queue
is empty (condition checked in Line 5), a work request is sent
to another process chosen at random on Line 6. Lastly, Line
11 checks for termination by running Dijkstra’s termination
algorithm at the end of each work loop iteration. Algorithm 2

Algorithm 2 Distributed Random Queue Splitting

1: S = root for theRank 0 process, andS = ∅ for processes
of higher rank.

2: Terminated = False.
3: while not Terminated do
4: checkForRequests() and satisfy.{Checks for work re-

quests from peers}
5: if |S| == 0 then
6: sendWorkRequest().{Sends work request to random

peer}
7: else
8: process(S.dequeue()).
9: end if

10: if |S| == 0 then
11: checkForTermination().{Checks for termination con-

ditions}
12: end if
13: end while

achieves good load balancing, but incurs overheads due to
the number of messages being transmitted for requesting and
receiving work. This may not be an impediment in small
compute clusters, but with in large clusters with high network
diameter, the penalty of network transmission rises rapidly. To
address this impediment, we propose our next algorithm.

C. Proximity Aware Distributed Random Queue Splitting (PA-
DRQS) Algorithm

Typically, multiple processes run concurrently on the same
compute node within a compute cluster. The cost for two
co-located processes (same compute node) to participate in
pair-wise communication is generally much lower than two
processes running on separate compute nodes due to the
absence of the latency that is introduced in each hop of net-
work communication. The cost difference is also enhanced by
MPI’s choice of shared memory segments for communication
between co-located processes. This idea is shown in Fig. 2,
where thicker edges represent a higher cost of communication.
Each rank is an MPI process, and the left and right rectangle
represent two different compute nodes in a supercomputer.

Work Request Ordering: Because of the latency cost,
it is preferable for a process to request work from a co-
located process before asking aremoteprocess. To that end, we
have designed and implemented a proximity aware version of
DRQS, known as Proximity Aware Distributed Random Queue
Splitting (PA-DRQS). We note that in the literature, proximity
awareness is popularly termed topology awareness. However,
we use “proximity aware” as we believe it is more apt given
that a process asks other processes for work in increasing order
of their distance from it. The PA-DRQS algorithm is structured
similarly to DRQS, but rather than choosing a random process
to request work from, we impose an order to the requests.
Before we can do that, we must determine which ranks are
co-located. This can be achieved in the following way:

• Each process obtains its network number, as defined by
RFC 1166 [27].

• An MPI All gather (from the MPI 2.0 specification)
operation is performed so that every process has the com-
plete list of all networks numbers. This is a synchronous
step. After the MPIAll gather, further operations are
compute node local.

• Each process, having the entire array of network numbers,
sorts them (we use QuickSort in our implementation).

• The resulting lists contains all network numbers, where
equal network numbers are adjacent in the list. Each
group of identical network numbers within the list is then
assigned a group number. Each process then determines
its location in the list, and then determines its group
number, which is referred to as itscolor.

• Each process uses its color as a parameter to
MPI Comm split, which creates an MPI Communicator
containing co-located (same color) processes on each
compute node within the compute cluster.

• From that information, a list of processes is created where
co-located ranks are at the beginning (starting with local
Rank 0) and non local ranks comprise the remainder of
the list.

• Once the sub-communicators have been established, each
process has an additional rank. The first is its global rank,
which a unique identifier within the entire job. The second
is its local rank, a unique identifier among co-located



processes.
The PA-DRQS algorithm begins in Line 1 by initializing

the work queues for all processes to be empty, except for the
master process which containsroot. A function to populate the
work request vector for each process is called in Line 3, and is
implemented as described above in work request ordering. For
requests to co-located remote processes of the same rank in
a compute node, the requesting process makes the request in
a sequential fashion based on their order in an ordered list of
global MPI ranks. Thus processes occurring earlier get asked
more often, which may result in more network communication
if the requests return empty. A possible solution to this is to
perform global ranking of co-located processes in real-time
based on decreasing order of work availability, thus ensuring
that a process with more work is asked first. However, main-
taining such a real-time list at each compute node incurs many
more message exchanges than sending sequential requests to
co-located remote processes – a higher message overhead.

Lines 4-14 constitute the work loop performed by all
processes. Each process checks for outstanding work requests
from other processes in Line 5 and services them by sending
each requester a portion of the work queue if it has pending
work. If the work queue is empty (determined on Line 6),
then a work request will be sent to another process. Whereas
in Algorithm 2 a process was chosen at random, in PA-DRQS,
the process to request work from is chosen by the ordering in
the request vector list created in Line 3. When a process needs
to request work from another, it iterates over this computed
list from top to bottom.

We further modify the algorithm, so that not all ranks
favor asking local ranks. This is because in our empirical
observations this leads to a large number of non-fruitful local
work requests preceding non-local work requests when all
local ranks have empty work queues. We mitigate this by
changing the order of the work request so that the local root
rank (the process within a group of co-located processes with
a local rank of0) will first ask non-local ranks for work. If
the work queue is non-empty, the process will call the user
provided callback function on one element of the work queue.
Finally, Lines 11-13 check for a termination condition.

The PA-DRQS algorithm has much fewer network com-
munications than the DRQS algorithm, which is desirable.
However, the design of the algorithm allows even a non-
Rank 0 process (Rank x) to seek work from a process outside
it’s compute node after receiving negative responses from
it’s co-located ranks (the process goes through it’s request
vector list). In our empirical observation, often this creates
unnecessary network communication, because in the time that
Rank x is requesting from its neighboring ranks, Rank 0, which
had no work, has already received work requests from some
other compute node. Technically, Rank x can get the work
now from Rank 0, but does not.

We address this concern in our implementation by requiring
non-Rank 0 processes to only request their local ranks. How-
ever, this results in an increase in the number of local request
messages in the compute node. As noted, another concern with

this algorithm is that it suffers from extra messages originating
from the Rank 0 process in the compute node even when there
are pending work in other co-located ranks. This is because
Rank 0 is required to ask a remote process for work. To
address these issues, we propose an extension to the PA-DRQS
scheme by using light-weight processes and propose the hybrid
algorithm. We note that in the absence of the ability to use
LWPs, PA-DRQS is still the algorithm of choice.

Algorithm 3 PA-DRQS: Proximity Aware Distributed Ran-
dom Queue Splitting

1: S = root for theRank 0 process, andS = ∅ for processes
of higher rank.

2: Terminated = False.
3: requestV ector = createRequestVector().
4: while not Terminated do
5: checkForRequests() and satisfy.{Checks for work re-

quests from peers}
6: if |S| == 0 then
7: sendWorkRequest().{Sends work request to the next

peer from the request vector}
8: else
9: process(S.dequeue()).

10: end if
11: if |S| == 0 then
12: checkForTermination().{Checks for termination con-

ditions}
13: end if
14: end while

D. H-DRQS: Hybrid Distributed Random Queue Splitting
Algorithm

In order to improve our proximity aware algorithm, we
design a hybrid parallel approach, which we term the Hybrid
Distributed Random Queue Splitting (H-DRQS) algorithm.
Whereas the previous algorithms presented utilize multiple
MPI ranks per compute node in the compute cluster, our hybrid
approach is able to leverage parallelism with only one MPI
process per compute node. We achieve this by utilizing light-
weight processes (LWP). In H-DRQS, each compute node may
spawn an arbitrary number of LWPs (threads) corresponding to
each MPI process. Only the original master thread is allowed
to participate in MPI communication. This is not a problem as
all processes share a common memory, and hence share one
work queue. The master thread is able to populate the work
queue which is accessible to all other threads on the same
compute node.

We prevent race conditions by ensuring the
enqueue/dequeue operations are guarded by a mutual
exclusion lock (mutex). We also ensure that the queue is not
modified by any threads during a queue split, which we do
using counting semaphores. The master thread of each process
executes Algorithm 4. It is initialized as in Algorithm 3 in
Lines 1-2, and to begin it creates and initializes a counting
semaphore for the threads to zero in Line 3. An additional



semaphore is created in Line 4 for use by the master and
is also initialized to zero. The master thread executes the
algorithm shown in Algorithm 4, all other threads execute
a simple work loop. When a thread is created (Line 5) it
immediately enters its work loop. In its loop, a thread first
blocks on thethreads semaphore (initially threads is zero,
master has to increment it) until it can decrement it to zero.
Once a thread has successfully decremented the semaphore,
it dequeues one work queue item and processes it. The queue
modifying operations are still protected by the mutex.

After processing the item, the threadincrementsthe master
semaphoremaster guard. Meanwhile, the master thread
enters its work loop and operates in the same fashion as
Algorithm 3 by checking for and servicing work requests, and
requesting work from other processes if necessary (Lines 6-
10). If there is work to be processed in the queue, the master
increments the thread semaphore by the valuemin{the number
of threads, number of items in the work queue} (Lines 11-
12). After incrementing the semaphore, all threads (master
included) process one work queue item (Line 13). Next, the
master thread attempts to decrement the master semaphore,
the same number of times that it incremented the thread
semaphore on Line 12. Recall that the master semaphore was
initialized to zero. This means that the master thread will block
until all other threads finish their work and increment the
master semaphore. Finally, the master checks for a termination
condition just as in Algorithm 3.

As all LWPs share one logical address space, the cost for
exchanging data/messages between threads is minimal, which
improves communication efficiency. Let’s see how we can
improve communication efficiency. For example, consider the
case where16 MPI processes are launched on each compute
node using Algorithm 3. Suppose that Rank 0 has no work
in it’s queue, but one of the other processes (local Rank 15)
has work. When Rank 2 requests Rank 0 for work, Rank 0
sends a negative reply and sends a request over the network
even though there is work available in the locality that can be
shared. At the same time, Rank 2, is clogging up the shared
memory sending out requests to processes in in turn. Both
aspects are inherently wasteful.

Now suppose that instead of the 16 MPI processes being co-
located, we use one MPI process with 16 LWPs (all sharing
one work queue). Only when this shared queue is empty (no
process has work), the master thread sends a work request to a
non-local rank (there are no co-located ranks now). Moreover,
since the queue is shared a slave thread will block on the
queue when it is empty, but never block if there is work in
the queue. This is done because the threads must not modify
the work queue during a potential queue split, as previously
described.

In the next section, we present empirical results from our
experiments in large parallel files systems at LANL and study
the efficiency of our algorithms.

Algorithm 4 Hybrid Distributed Random Queue Splitting (H-
DRQS)

1: S = root for theRank 0 process, andS = ∅ for processes
of higher rank.

2: Terminated = False.
3: thread guard = semaphoreinit(threads).
4: masterguard = semaphoreinit(master).
5: startThreads().
6: while not Terminated do
7: checkForRequests() and satisfy.{Checks for work re-

quests from peers}
8: if |S| == 0 then
9: sendWorkRequest().{Sends work request to random

peer}
10: else
11: count = min(threads.count(),queue.count()).
12: semaphoreincrement(threadguard,count).
13: {Threads process work queue elements}
14: semaphoredecrement(masterguard,count).
15: end if
16: if |S| == 0 then
17: checkForTermination().{Checks for termination con-

ditions}
18: end if
19: end while

V. EXPERIMENTATION AND EMPIRICAL RESULTS

To evaluate our algorithms, we designed a simple API based
on application call-backs, which is similar to the POSIX speci-
fication for FTW. For the purposes, of testing we used multiple
Panasas [20] file systems attached to multiple compute clusters
at LANL, through a specialized storage network known as
PaScal [28]. Specifically, we studied three file systems, namely
a) a 6.5 million files, of size471 TB; b) a 12 million files,
of size 2 PB; and c) a110 million files, of size 7 PB.
The implementation of our algorithms was done using Open
MPI [29], combined with the GNU implementation of the
POSIX threading library. We ran our tests on Cielo – 8944
compute nodes and 16 cores per compute node. We chose to
run 2 processes per compute node 40 processes on 20 nodes to
(i) have more memory available per process, and (ii) guarantee
that we use all 12 available network routes (depending on
node placement in the torus). Our aim is to choose the least
number of cores for traversal so that more cores are available
for computation.

Our experiments are run on production systems where
the file systems change significantly within hours, so results
averaged over several runs, taking several hours, will not be
indicative of algorithm effectiveness. For this reason, we ran
on three different file systems to ensure diversity of results,
but only 2-3 times, to ensure consistency.

Centralized Parallel vs. Hybrid Distributed: Figure 3(a)
shows a comparison of the running time of the previous
Centralized Parallel algorithm (Algorithm 1) versus our DRQS
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Fig. 3. Running Time Illustrations

variants equal splitting) for gathering file system metadata on
the file system containing 6.5 million files. The horizontal
axis shows the number of processes used for each experiment.
The vertical axis shows the running time of the algorithms in
seconds. Note that DEQS (Distributed Equal Queue Splitting)
refers to to the case where a requested process splits its
work queue into two equal halves, giving one half to the
requesting process. The DRQS/DEQS variants outperformed
the existing Centralized Parallel (CP) algorithm by more than
300% percent, in terms of time. In fact, with15 or less
processes, the CP algorithm took long enough that we cannot
represent it in the same graph.

We also implemented an enhancement of the CP algorithm
where a slave process keeps one of the work elements from its
exploration and returns the rest to the master. This variation
ensures that the slave does not have to make a new request for
work again, thus reducing network communication. However,
the running time of this enhancement was close to the original
CP algorithm because network communication was still the
major bottleneck.

As is noticeable, the H-DRQS algorithm performs the best
among all the DRQS/DEQS algorithms, hence we use it more
often for other comparisons in the interest of brevity and space.

Hybrid DRQS Profile: Figure 3(b) shows the profile of
time required for each component of the algorithm. As the
H-DRQS is the best algorithm we have, we use its profile.
For the purposes of profiling we grouped the output into:(i)
user provided function (a standard user call-back function); the
lstat() system call; the readdir() system call; and the network
communication overhead.

The X-axis represents the number of processes used in the
experiment and the Y-axis shows the amount of process time
consumed by each component. Observe that the components
which dominate the running time of our algorithm are lstat()
and readdir() (both operating system calls), which implies that
the components of the algorithm have very low footprint. An-
other positive of our algorithm is: with increase in the number
of processes the communication cost does not increase.
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Fig. 4. Messages and Bytes Transferred StatisticsMessages and Data Transfers:In addition, to demonstrat-

ing the communication efficiency of our algorithms, we also
performed experiments to measure the number of messages
and bytes transferred in the network. It is desirable to have
low total messages/bytes transferred and also a balance in
communication between the nodes. The results for total num-
ber of messages and bytes are shown in Fig. 4. The X-axis
represents the number of files in the file system and and the Y-
axis represents the number of (messages or bytes) and use the
logarithmic scale. The comparison is between CP, H-DRQS,
and PA-DRQS, where the tests were run on two parallel file
systems. As expected, H-DRQS and PA-DRQS perform much
better than the CP algorithm in terms of both messages (an
order of magnitude less) and in terms of bytes (more than two
orders of magnitude less). The performance of both H-DRQS
and PA-DRQS are similar, which is expected.

Fig. 5 shows the heatmaps for bytes exchanged between
processes when the algorithms were run on the6.5 million files
Panasas file system. The heatmaps underscore the efficiency of
our proposed algorithms versus the CP algorithm. The bytes
exchanged in DRQS are an order of magnitude better than
CP, while the H-DRQS has the best result, being almost two
orders of magnitude better than the CP.
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Fig. 5. Heat Maps Showing Message Exchanges

Work Distribution: An important goal of work distribution
is to achieve uniform load distribution to prevent resources
underutilization. Fig. 6 shows the results of a large scale test
run on the110 million files performed using20 processes.
Fig. 6(a) shows the span of the work distribution. The figure
is a histogram showing the distribution of the workloads per-
centages among processes. H-DRQS has a much smaller span
than DRQS. For the rest of the figures (Figs. 6(b), 6(c), 6(d)),
the the horizontal axis is composed of ranges of work load
percentages, and the vertical axis shows how many processes
performed a part of the work within the given range. We note
that using DRQS without proximity information resulted in
one process performing a disproportionate amount of the work,
as can be seen on the far right hand side of the graph. This is
due to a propensity for unfruitful work requests being sent by
the other processes. If a process is required to sent out several



non fruitful work requests before a fruitful request is fulfilled,
then a process with work to do will proceed uninterrupted
while others are idle.

The results of our proximity aware algorithm in Fig. 6(d)
demonstrate the improvement in workload distribution as a by
product of fewer non fruitful requests being sent, and multiple
co-located processes sharing a work queue. Fig. 6(d) shows the
results of a similar test to that of Fig.6(b), but with proximity
awareness enabled. The remaining three subfigures show a
comparison between DRQS, DEQS, and H-DRQS, the X-axis
is the workload percentage and the Y-axis is the number of
processes. It is easy to see that H-DRQS has a much smaller
span and better balancing of work among the processes.

VI. CONCLUSION

In this paper, we propose a novel framework and three three
novel parallel algorithms to facilitate distributed file system
operations with low message complexity. Our techniques not
only balanced file system work loads uniformly in real-world
experiments, but did so with low communication costs, and
without global process synchronization. Our algorithms have
been tested on state-of-the-art parallel file systems at LANL,
and are now used in productions systems on a daily basis for
metadata management.
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