Sailfish: A Framework For Large Scale Data Processing

Sriram Rao*
Microsoft Corp.
sriramra@microsoft.com

Mike Ovsiannikov
Quantcast Corp
movsiannikov@quantcast.com

Abstract

In this paper, we present Sailfish, a new Map-Reduce frame-
work for large scale data processing. The Sailfish design is
centered around aggregating intermediate data, specifically data
produced by map tasks and consumed later by reduce tasks, to
improve performance by batching disk I/0. We introduce an ab-
straction called Z-files for supporting data aggregation, and de-
scribe how we implemented it as an extension of the distributed
filesystem, to efficiently batch data written by multiple writers and
read by multiple readers. Sailfish adapts the Map-Reduce layer
in Hadoop to use Z-files for transporting data from map tasks to
reduce tasks. We present experimental results demonstrating that
Sailfish improves performance of standard Hadoop; in partic-
ular, we show 20% to 5 times faster performance on a represen-
tative mix of real jobs and datasets at Yahoo!. We also demon-
strate that the Sailfish design enables auto-tuning functionality
that handles changes in data volume and skewed distributions ef-
fectively, thereby addressing an important practical drawback of
Hadoop, which in contrast relies on programmers to configure sys-
tem parameters appropriately for each job, for each input dataset.
Our Sailfish implementation and the other software compo-
nents developed as part of this paper has been released as open
source.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Systems—

Distributed applications

General Terms

Design, Experimentation, Performance

1 Introduction

In recent years data intensive computing has become ubiquitous at
Internet companies of all sizes, and the trend is extending to all
kinds of enterprises. Data intensive computing applications (viz.,

*Work done at Yahoo! Labs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SOCC’12, October 14-17, 2012, San Jose, CA USA

Copyright 2012 ACM 978-1-4503-1761-0/12/10 ...$15.00.

Raghu Ramakrishnan*
Microsoft Corp.
raghu@microsoft.com

Adam Silberstein*
LinkedIn
asilberstein@linkedin.com

Damian Reeves
Quantcast Corp
dreeves@quantcast.com

machine learning models for computational advertising, click log
processing, etc.) that process several tens of terabytes of data are
common. Such applications are executed on large clusters of com-
modity hardware by using parallel dataflow graph frameworks such
as Map-Reduce [10], Dryad [15], Hadoop [2], Hive [28], and Pig [20].
Programmers use these frameworks on in-house clusters as well as
on public cloud settings (such as Amazon’s EC2/S3) to build ap-
plications in which they structure the computation as a sequence of
steps, some of which are blocking. The framework in turn simpli-
fies distributed programming on large clusters by providing soft-
ware infrastructure to deal with issues such as task scheduling,
fault-tolerance, coordination, and data transfer between computa-
tion steps. We refer to the data that is transferred between steps as
intermediate data.

In the cluster workloads at Yahoo!, we find that, a small fraction
of the daily workload (about 5% of the jobs) use well over 90% of
the cluster’s resources. That is, these jobs (1) involve thousands of
tasks that are run on many machines in the cluster, (2) run for sev-
eral hours processing multiple terabytes of input, and (3) generate
intermediate data that is at least as big as the input. Therefore, we
find that the overall cluster performance tends to be substantially
impacted by these jobs and in particular, how the computational
framework handles intermediate data at scale.

At large data volumes, transporting intermediate data between
computation steps typically involves writing data to disk, reading it
back later, and often a network transfer. This is because tasks from
successive computation steps are usually not co-scheduled and may
also be scheduled on different machines to exploit parallelism. For
computations in which tens of terabytes of data have to be trans-
ported across cluster machines, the associated overheads can be-
come a significant factor in the job’s overall run-time. Surprisingly,
the overheads involved in the handling of intermediate data and its
impact on performance at scale have not been well studied in the
literature. This is the focus of our paper.

The main contributions of this paper are as follows:

e We demonstrate the importance of optimizing the transport
of intermediate data in distributed dataflow systems such as
Hadoop (Section 2).

o We argue that batching data for disk I/O (or aggregating data
for disk I/O) should be a core design principle in handling
intermediate data at scale (Section 3).

e Based on this design principle, we develop Z-files as an
abstraction, to support batching of data written by multiple
writers (Section 4). We develop an Z-file implementation
by extending distributed filesystems that were previously de-
signed for data intensive computing and are already deployed

in computing clusters. Z-files are effectively a general frame-
work for aggregating intermediate data whose specific in-
stantiation can be based on the cluster configuration.

e Using Z-files to transport intermediate data (i.e., to trans-
fer output of map tasks to relevant reduce tasks), we de-
velop Sailfish, a new Map-Reduce framework that can
run standard Hadoop jobs with no changes to application-
code (Section 5). Sailfish provides the same level of
fault-tolerance for jobs as Stock Hadoop.

e We experimentally demonstrate that Sailfish improves
upon existing frameworks along the dimensions of both per-
formance and auto-tuning functionality (Section 6):

— Performance: Using benchmarks as well as produc-
tion jobs run on actual datasets, we show significant
performance gains with Sailfish: Using a repre-
sentative mix of production jobs at Yahoo!, we demon-
strate that the same job, run unmodified, with Sailfish
is between 20% to 5 times faster when compared to
the corresponding run with Stock Hadoop (see Section
6.3).

— Auto-tuning Functionality: The core design princi-
ple of aggregating the output of map tasks allows us
to gather statistics because intermediate data manage-
ment is decoupled from the computation. This enables
Sailfish to automatically exploit parallelism in the
reduce phase of a computation, with no need for users
to tune system parameters, unlike current systems. The
results in Section 6.3 demonstrate that Sailfish can,
in a data-driven manner:(1) handle changes in data vol-
ume by dynamically determining the number of reduce
tasks, (2) handle skew in intermediate data by dynam-
ically determining the work assignment (i.e., range of
keys to process) for reduce tasks, and (3) by decoupling
sorting of intermediate data from map task execution to
better handle skew in map output.

We discuss related work in Section 7, and conclude in Section 8 by
presenting directions for future work.

Our Sailfish implementation and the other software compo-
nents developed as part of this paper has been released as open
source [6].

2 Importance of Intermediate Data Handling
2.1 Current Approaches to Handling Intermediate Data

To motivate the problem of handling intermediate data at scale, we
briefly describe the mechanisms used in existing Map-Reduce im-
plementations. For example, in Hadoop [2] (an open source Map-
Reduce implementation), the underlying mechanism used for han-
dling intermediate data in a Map-Reduce computation is essentially
via a parallel merge-sort. A Hadoop map task generates intermedi-
ate data (i.e., key/value pairs) as it executes, stores them in RAM,
and periodically sorts and spills the data to a file on disk. Whenever
the map task completes execution it merges the sorted spills from
disk (in effect, executing the merge phase of an external sort) to
produce a single output file. This single output file contains sorted
runs of key/value pairs, partitioned by key, with one sorted run des-
tined for each reducer task (see Figure 1). Next, a reducer task pulls
its portion of the input data from each of the mappers’ output files.
After the reducer has obtained all of its input from the map tasks,

Map Output
(stored on disk)
Partition1
@ Partition, ® T,
Partitiong b
Partition1
@ Partition,
PartitionR
Partition1
@ Partition2
Partitiong e
Map Reduce
Tasks Tasks

Figure 1: A reduce task retrieves its input from each of the
map tasks. The number of distinct retrievals is proportional to
M x R and the data read per retrieval is proportional to 1/R.

it merges the data (using a disk-based merge if necessary) and then
invokes the user-supplied reduce function.

With this design, there is a potential for further inefficiency when-
ever the map task has to merge spills from disk to generate its fi-
nal output file (i.e., whenever the map output exceeds the size of
RAM). Interestingly, we find that this occurs frequently in practice,
especially when there is skew in the output size of map tasks.

2.2 Impact of Intermediate Data Size and Tuning

At scale, the cost of handling intermediate data is dominated by the
rate at which data can be read from (as well as written to) the disk
subsystems on individual nodes. This is because disk performance
is affected by seeks. The effective disk transfer rate is highly depen-
dent on the number of seeks as well as the amount of data read per
disk seek. Up to a point, the effects of disk seeks may be masked by
memory-based filesystem buffer caches. Beyond that point, unless
careful attention is paid to the seek overheads involved in handling
intermediate data, cluster throughput will degrade.

To evaluate these overheads in practice, we use Hadoop [2] as
the basis for our study. As a starting point, we measure Hadoop’s
runtime for executing jobs in our experimental cluster as the size of
intermediate data in a given job varies from 1TB to 64TB. Figure 2
shows the result of this experiment (full details of our experimental
setup are in Section 6).

Our findings are striking. As the volume of intermediate data in-
creases, Hadoop performance degrades non-linearly (for example,
beyond 16TB of intermediate data, there is a 2.5x increase in run-
time as the volume of data processed increases by 2x). This degra-
dation is due to the disk overheads involved in the data transfer. To
estimate the disk overheads involved, in a computation involving
M mappers and R reducers, as Figure 1 shows, there are M * R
distinct retrievals [11, 19]. Furthermore, as Figure 1 also shows,
due to data partitioning, the amount of data retrieved by a reduce
task from a map task is inversely proportional to the number of re-
ducer tasks (i.e., 1/R). Therefore, for computations in which the
values of M and R are large (i.e., on the order of 1000’s of tasks),
the amount of data read per disk seek decreases substantially and
the number of disk seeks grows super-linearly, causing a degra-

Stock Hadolop —_— ' I ;
P
Z
= (O 1
=}
an
£ st 1
N’
£
= 4t]
=
=
o 27 1
[}
—_
1 1 + 1 1 1 .l
1 2 4 8 16 32 64 128

Intermediate data size (TB)
Figure 2: Hadoop performance vs. intermediate data size

Intermediate data size Cache effects Impact on data transfer
Int. data size < RAM size RAM masks disk I/O | Transter is network-bound
Int. data size > RAM size High cache hit rate Transfer is likely network-bound
Int. data size >> RAM size | Low cache hit rate Seek-intensive (i.e, disk-bound)

Table 1: Intermediate data size vs. cache effects

dation in achievable disk throughput resulting in poor application
performance.

Table 1 summarizes our observations from the experiments.

Some of the performance degradation caused by very large inter-
mediate data sizes can be mitigated by tuning system parameters.
Unfortunately, we also find that parallel dataflow frameworks are
very sensitive to system parameters that users are expected to tune.
For instance, with Hadoop, a user has to choose the number of re-
duce tasks for a Map-Reduce job and tune the parameters related
to sorting the output of a map task (e.g., buffer sizes, merge width).
Though various guidelines are provided [19], such tuning is known
to be critical for performance and is non-trivial [14]. This problem
is made worse by continuously changing data volumes. For exam-
ple, in Yahoo! workloads, we find that computations run on a peri-
odic basis (e.g., daily click-stream log processing) see as much as a
2x variation in the size of their input depending on the time of day
and day of the week. In practice, we find that once programmers
choose a set of parameters for their job, they rarely tune it further.
For instance, anecdotal evidence in our Yahoo! cluster workloads
suggest that some of the jobs have been sped up by nearly a fac-
tor of two with careful parameter tuning. Such speedups through
parameter tuning have also been observed elsewhere [14]. In the
absence of such careful tuning, the net result is that overall cluster
performance degrades.

3 Our Approach: Batching Data I/0

The techniques we develop for handling intermediate data are in
general applicable to any parallel dataflow graph frameworks that
contain a blocking step (i.e., whenever the output from one step has
to be materialized by writing to disk-based storage before it can
be consumed by a later step). Such a blocking step is present in
dataflow graphs such as Map-Reduce, joins in parallel databases,
Group-By computations in SQL systems, Pig (Yahoo!’s version
of SQL) programs which are compiled into Hadoop Map-Reduce
computations, etc. In this paper, we use Map-Reduce as a sample
application since every step in the flow is blocking.

Our approach is driven by practical constraints. Clusters for
data intensive computing are built using commodity hardware in

Map Reduce
Tasks Tasks

append | [aw |
s h(key) = 1 scan
1
7 —J
e IF\Ie1

\ h(key) = 1

append RAM

{ hikey)=2 R
_________ - - scan
IFile;
~ h(key) =2

RAM
\1 i scan
append IFileq
h(key)=R |n(key) =R

Figure 3: Batching data for disk I/O (or aggregation) lowers the
overheads involved in transfer of intermediate data. Map out-
put is batched and committed to disk. The number of distinct
retrievals in the reduce phase is proportional to R.

which hard disks are currently the only cost-effective high capac-
ity storage mechanism. Hence, we focus on minimizing the disk
overheads involved in handling large volumes of intermediate data.
While storage alternatives that avoid some disk overheads alto-
gether are available, they are not yet viable for our setting. RAM-
based systems (e.g., RAM-Clouds [21]) are not yet cost-effective
on the scale of tens to hundreds of terabytes; and while solid-state
drives (SSDs) excel at random I/O, their price to storage density
ratio is much higher than disk drives, and thus they also are not
cost-effective for multi-terabyte scale settings.

As noted in Figure 1, to lower the disk overheads involved in
transporting intermediate data it is crucial to minimize the number
of disk seeks. When retrieving a given volume of data from disk,
fewer disk seeks translates to increasing the amount of data read per
seek. This suggests that batching data for disk I/O (or aggregating
data for disk I/0) should be a core design principle in handling
intermediate data.

3.1 Intermediate Data Aggregation: Z-files in Sailfish

Figure 3 illustrates the benefits of aggregating intermediate data on
a per-partition basis. A reduce task reads aggregated data to ob-
tain its input, thereby reducing the number of distinct retrievals in
the reduce phase from M * R to R. At scale, such a drastic re-
duction in the number of retrievals enables substantial performance
improvements.

A straightforward way to aggregate records in a file is to employ
an aggregator task that receives records from map tasks and com-
mits them to disk. We considered implementing custom aggregator
tasks that work on a per-partition basis. However, this approach
of employing ad-hoc custom aggregators suffers from some prac-
tical limitations. In particular, whenever there is data skew, some
aggregators may need to handle substantially more data than oth-
ers (i.e., become hot-spots) and hence, limit performance. Further-
more, dealing with failures of aggregator tasks is another issue.

In our work, we enhance the distributed filesystem which are
originally designed for data-intensive computing to also support
data aggregation through the notion of an Z-file (intermediate data
file). Consequently, Z-files make the intermediate data available
outside the context of a computation, enabling additional introspec-
tion functionality (such as debugging, reuse, etc.).

3.2 Benefits of Aggregation for Addressing Skew

While data aggregation lowers the disk overheads in the reduce
phase, as noted in Section 2.1 disk overheads can affect the map
phase as well if the map output does not fit in memory and must
be spilled to disk before it is merged. Since a reduce task cannot
begin execution until all map tasks generate their output file, the
sort overhead incurred by even a single map task can substantially
increase job completion time. Such a slow-down occurs, for in-
stance, if there is skew in map output: some map tasks may incur
a multi-pass external merge to produce their final output file while
the remaining tasks may produce it via a single pass in-memory
sort. While DISC frameworks employ speculative execution to
work around “straggler” tasks, note that such a mechanism has lim-
ited benefit in a setting where the slow-down in task completion is
due to the external sort.

To mitigate these effects and also to handle skew, we decouple
the sorting of intermediate data from map task execution. That is,
the intermediate data is first aggregated, and then sorted outside the
context of map tasks. Therefore, sorting of intermediate data is
now a separate phase of execution which can be optimized by the
DISC framework. This decoupling relieves the programmer from
having to tune framework parameters related to map-side sorting
of the intermediate data. For instance, specifically for Hadoop, our
approach eliminates 4 parameters related to map-side sorting (see
Table 2 (a)) that a programmer has to tune.

Furthermore, we can take advantage of the aggregation of map
outputs to build an index, as noted above, which enables us to auto-
tune the subsequent reduce phase effectively. This alleviates the
need for programmers to select the number of reduce tasks (as re-
quired, for example, by Hadoop). Using the index, based on the
distribution of keys across the intermediate data files, the number
of reduce tasks as well as a task’s key-range assignment can be de-
termined dynamically in a data dependent manner. The index also
allows each reduce task to efficiently retrieve (only) its input.

Figure 3 shows how Sailfish uses Z-files for transporting the
intermediate data between map tasks and reduce tasks. Briefly, in
our design, the output of map tasks (which consists of key/value
pairs) is first partitioned by key and then aggregated' on a per-
partition basis using Z-files. This intermediate data is sorted and
augmented with an index to support key-based retrieval. Finally,
the reduce phase of execution is automatically parallelized in a
data-driven manner. We elaborate on this design in the next two
sections.

Since Z-files are a key building block in the Sailfish design,
in what follows (Section 4) we first describe the design and im-
plementation of the Z-file abstraction. Next, in Section 5, we de-
scribe the Sailfish system, and how it uses Z-files to implement
a Map-Reduce framework.

4 7-files for Aggregating Intermediate Data

We extended the Kosmos distributed filesystem (KFS) [4], an alter-
native to HDFS, to implement the Z-file abstraction. We chose KFS
purely for implementation convenieance (see Section 4.1) since it
already implements some of the features for constructing Z-files.
Our ideas are general and applicable to HDFS as well. In what fol-
lows, we first provide an overview of KFS and then describe how
we extended KFS to implement Z-files.

'In the rest of the paper, in the context of Sailfish and Z-files
we use aggregation to mean batching data for disk I/O.

4.1 Background: KFS Overview

KFS is designed to support high throughput access to large files in
clusters built using commodity hardware. KFS’s design is similar
in spirit to Google’s GFS [13] and Hadoop’s HDFS [3]. Blocks
of a file (referred to as chunks) are striped across nodes and repli-
cated for fault-tolerance. Chunks can be variable in size but with
a fixed maximal value (which by default is 128MB). KFS consists
of three components: (1) a single metadata server (metaserver) that
provides a global namespace, (2) a set of chunkservers that run on
each of the cluster machines and store chunks as files on the ma-
chine’s local disk(s), and (3) a client library which should be linked
with applications to access files stored in KFS. Finally, KFS is in-
tegrated with Hadoop for storing the input/output in MapReduce
computations and has been deployed in practical settings.

4.2 Adapting KFS to Support Z-files

An Z-file is like any other KFS file, with a few exceptions. First,
the chunks of an Z-file are written to using an atomic record append
primitive and hence, by definition, append-only. Second, in our
implementation, once a chunk is closed for writing, it is immutable
(i.e., stable). We leverage the immutable property of stable chunks
to sort the records stored in a chunk (see Section 4.2.3).

When a client appends a record to an Z-file, this translates to
an append operation on a chunk of that Z-file. The chunkserver
storing that chunk plays the role of the aggregator task that we out-
lined above (see Section 3.1). Next, to allow data aggregation in
Z-files to be done in a distributed manner, we (1) restrict the num-
ber of concurrent writers to a given chunk of an Z-file, and (2) allow
multiple chunks of an Z-file to be concurrently appended to. This
approach has multiple advantages. First, by allowing a chunk to
be written to by multiple writers, data for an Z-file can be packed
into fewer chunks. Second, since chunks are striped across nodes,
data aggregation for the chunks of an Z-file is handled by multiple
chunkservers which allows us to avoid hot-spots.

In the following subsections, we present the APIs for supporting
T-files, describe how we implement the key operations of append-
ing records and retrieving records by key, and finally, discuss some
efficiency considerations.

4.2.1 ZI-file APIs

Conceptually, the APIs we have developed for Z-files to support
record-based /O are the following:

e create_ifile(filename): An application uses this
API to create an Z-file. The call returns a file descriptor for
use with subsequent append operations.

e record_append (fd, <key, wvalue>): A writeruses
this API to append records to an Z-file.?

e scan(fd, buffer, lower_key, upper_key): A
reader uses this API to retrieve records from an Z-file that
are in the specified key range. The KFS client library im-
plements the functionality of retrieving the matching records
from all the chunks of the Z-file.

4.2.2 Appending Records To An Z-file

Appending a record to an Z-file translates to an append operation
on a chunk of that file. The steps involved in appending a record to
an Z-file chunk are as follows:

2Our implementation of this API was released as part of the KFS
open-source software distribution in version 0.5.

1. Allocate Chunk

Metaserver Client
2.Bind to CSy

3./Append Record

cs,

cs,

IFile

Figure 4: Appending records to an Z-file: The metaserver binds
the client to the chunkserver (C.S3) which stores one of the 3
open chunks in the Z-file.

1. To append a record to an Z-file, a client must be bound to a
chunk of that Z-file. The client obtains a binding by issuing
an allocation request to the KFS metaserver. The metaserver
then binds the client to one of the chunks of that Z-file that
is currently open for writing. If there is no such chunk, then
the KFS metaserver allocates a new chunk. In either case,
in response to the client’s request, the metaserver binds the
client to a chunkserver. This is illustrated by steps 1 and 2 in
Figure 4. The client can continue appending records to that
chunk as long as the binding is valid. Note that a client has
such a binding for each Z-file it is appending records to.

2. The client sends the record (i.e., just data, without the offset)
to the chunkserver that it is currently bound to. This corre-
sponds to step 3 in Figure 4.

3. The chunkserver assigns an offset to the record within the
chunk, buffers the record in memory (while asynchronously
writing data to disk), and responds with an ack message to
the client. This is step 4 in Figure 4.

4. When the client receives an ack message from the server, the
client considers the operation to be successful.

5. If the client fails to receive an ack message in a timely man-
ner, the client will retry. The client, with suitable timeouts,
queries the chunkserver for the operation’s status. If the sta-
tus retrieval fails, the client will first give up its binding to
the chunkserver and then retry the operation starting from
the chunk allocation step (step #1). As part of the retry for a
given operation, the client may get bound to a different chunk
of the Z-file.

6. The chunkserver may also fail the operation if appending the
record will the cause the chunk’s size to exceed the maximal
value In this case, the chunkserver will return an error to the
client. The client will give up its chunkserver binding and
then retry the operation by starting from the allocation step
(step #1).

Our record append primitive provides at least once semantics
for each operation (since the retry logic above does not preclude
a record being appended multiple times). Sailfish employs
per-record framing to filter out such duplicate records (see Sec-
tion 5.2.4).

With the above protocol (see step #1), concurrent writers to an
7Z-file can be bound to the same chunk. Extending the protocol
to handle concurrent appends is fairly straightforward. For each
record append operation, since the chunkserver assigns the offset
within the chunk, it can serialize the appends it receives from mul-
tiple writers in a lock-free manner. The record append operation is
therefore atomic. Lock-free atomic append operations are not new

and have been implemented in filesystems. For instance, using the
write system call supported by the Linux filesystem, concurrent
writers can append to a file in a lock free manner by having the
operating system serialize the writes. That is, the clients provide
the data but the server chooses the offset. The Google filesystem
paper [13] also mentions implementing a similar atomic append
primitive. From the perspective of appending records to a single
chunk, our primitive is similar to these implementations. A novel
aspect of our Z-file implementation is the extension of allowing
multiple chunks of an Z-file to be concurrently appended to.

As an aside, we note that we have also extended our record
append implementation to support replication. This is described
in [26]. Since we do not use replication for Z-files in this paper, we
do not discuss this further.

4.2.3 Retrieving Records From An 7-file By Key

To support key-based retrieval of records from an Z-file, we aug-
ment each chunk with an index. Since the client provides a key
when appending a record, the chunkserver saves the key in a per-
chunk index that is written out past the end of the chunk®. Conse-
quently, construction of the per-chunk index incurs minimal over-
head. In addition, as a performance optimization to support data
retrieval by key (viathe scan () API), we use an offline process to
sort the records within a chunk. The sort operation is done on stable
chunks which are closed for writing. Whenever a chunk becomes
stable (i.e., the chunk is full or the metaserver forced chunkserver to
make a chunk stable), the chunkserver notifies a chunksorter dae-
mon process that is running locally. The chunksorter, in turn, reads
the data from disk (at most 128MB)), sorts it in-memory, and writes
the data back to disk (along with an updated in-chunk index). Fi-
nally, chunksorter failures are handled via re-execution.

The in-chunk index is necessarily sparse to minimize both index-
processing overheads as well as storage space requirements. We
record an index entry for approximately each 64KB of data; with a
128MB chunk size, this translates to about 2000 entries per chunk.
In practice, we find that a per-chunk index is about a few tens of
KB in size.

4.2.4 Efficiency Considerations In Building 7Z-files

To maximize the available write parallelism in constructing an Z-
file, we restrict the number of concurrent appenders to a chunk.
This is accomplished using a space reservation protocol, in which,
prior to appending records to a chunk, a client first reserves logical
space within a chunk with the chunkserver. The client then appends
records as long as it has space. If the space reservation fails, the
client gives up the current chunkserver binding and then obtains a
new binding from the metaserver. For details, see [26].

In our design, for a given chunk, a chunkserver batches records
appended by different clients and writes them to disk in a physi-
cally contiguous manner. Any unwritten portion of a chunk is only
between the end of the last record and the end of the chunk. Unwrit-
ten portions in a chunk will exist only if the remaining amount of
space in a chunk is too small for any client to use. A key property
of our record append implementation is that records do not span
chunk boundaries. This also means that records have a fixed maxi-
mal size, which is the same as the chunk size (currently, 128MB).

Finally, the allocation policy we have used to bind clients to
chunks forces new Z-file chunks to be allocated judiciously—only
when there are no chunks open for writing or if a client reports to

*The per-chunk index is written at a fixed offset in the chunk file—
offset corresponding to 128M. This enables efficient storage and
retrieval of just the index alone.

IFiley: hash(key) = 1

<ky, vg>

<X v> TN

Ca

Jn

IFile: hash(key) = 2

Cs

Figure 5: Mappers appending their output, partitioned by key,
to Z-file chunks. Note that multiple chunks of multiple Z-files
are appended to concurrently.

Process: [apple - carrot)

Process: [carrot - grape)

\ W: hash(key) = 65

key offset key offset
apple 64326 apricot 20326
banana 521467 berry 256467
carrot 1317689 grape 856689

Figure 6: Reducers retrieving their assigned key ranges from
the chunks of an Z-file. Multiple reducer tasks are assigned
non-overlapping key ranges from a single Z-file.

the metaserver that it was unable to append to a chunk (e.g., due
to contention). This enables us to batch data from multiple writers
into as few chunks as possible.

5 Sailfish: MapReduce Using Z-files

‘We use Hadoop as a starting point for implementing Sailfish.
Hadoop consists of a Map-Reduce framework and HDFS (Hadoop
distributed filesystem). In building Sailfish, we made modifi-
cations to Hadoop’s Map-Reduce components, and used KFS ex-
tended to support Z-files as a drop-in replacement for HDFS.

In this section, we first present a conceptual overview of how
Map-Reduce computations are executed using Sailfish, and specif-
ically, how Z-files are used to transport intermediate data from map
tasks to reduce tasks. We then describe salient implementation de-
tails for Sailfish, and finally provide an estimate of the disk
seeks involved for I/O related to Z-files in Sailfish.

5.1 Sailfish Overview

The key aspects that define the execution of a Map-Reduce compu-
tation with Sailfish are as follows:

1. Writing map task output to Z-file: Map tasks append their
output (i.e., key/value pairs) to Z-files using the record ap-
pend API described earlier (in Section 4.2.2). Map output is

partitioned by key (the choice of hash partitioning or range
partitioning is application-specific) and written to the Z-file
associated to the partition. That is, there is exactly one Z-
file per partition. This is illustrated in Figure 5. Z-file; is
associated with keys whose partition is ¢. For instance, for
partition 1, mappers M, M2 append records to chunk C;
while M3, My append records to C5. The chunkservers stor-
ing C1, C5 serialize the appends to their respective chunks.
Implementation details of how map output is appended to Z-
files are covered in Section 5.2.1.

2. Sorting and indexing Z-file chunks: As motivated in Sec-
tion 3.2, in Sailfish sorting of map output is decoupled
from map task execution. As described in Section 4.2.3,
whenever an Z-file chunk becomes stable, it is sorted and
augmented with an in-chunk index. Implementation details
are covered in Section 5.2.2.

3. Determining the number of reducers: Sailfish tries to
automatically parallelize execution in the reduce phase by
choosing the appropriate number of reduce tasks based on
data properties (such as the number of keys per Z-file) and
run-time properties (such as the number of machines, avail-
able RAM, etc.). Our goals in the reduce phase are to di-
vide work evenly among the reduce tasks and meet a target
amount of work per task. The details are described in Sec-
tion 5.2.3.

4. Retrieving reduce task input from an Z-file: Reduce tasks
obtain their input from the appropriate Z-file based on their
assigned key range. This is illustrated in Figure 6. Reduce
tasks R, R are assigned to Z-filegs and they use the per-
chunk index to retrieve (only) their respective input from the
Z-filees’s chunks. Implementation details of how reduce in-
put is generated by merging the records from Z-file chunks
is described in Section 5.2.4.

In addition to handling task failures (map/reduce tasks), there is
also the issue of handling data loss in Z-files (i.e., when a chunk
of an Z-file is lost due to disk failure). In Sailfish, data loss
will trigger the recomputation of all the map tasks that wrote to
the lost Z-file chunk. Section 5.2.5 covers how recomputations are
handled.

5.2 Sailfish Implementation

Figure 7 illustrates the dataflow path in Sailfish. We describe
the steps in the following sub-sections.

5.2.1 Appending Map Output To Z-files

A map task on start up spawns a child process iappender for ap-
pending records to Z-files. Each record generated by the map task
is streamed to the iappender as a tuple: <partition, key, value>
(step 1 in Figure 7). The iappender buffers the records and peri-
odically flushes the data to the Z-file associated with the partition,
using the record append API. As described in Section 4.2.2, the
iappender is bound to a chunkserver, and to minimize network
overheads when appending records to a chunk, the iappender
gathers multiple records (by default, upto 64KB of data) and writes
them to the chunkserver in a single operation (step 2 in Figure 7).
The chunkserver buffers records sent by multiple iappender’sin
RAM and commits the records to disk (step 3 in Figure 7). Finally,
when the parent map task has processed all of its input, it notifies
the iappender to flush any remaining buffered records. After the
outstanding record append operations finish successfully, the task
execution is complete.

;
1

i Reduce

; chunkserver Task
1(2)

M | 3 (9)

o 5 o @

chunksorter

I-file chunk on a
single node

Figure 7: Dataflow in Sailfish as it corresponds to a single
T-file chunk. The iappender and imerger are one per task.
There is one workbuilder daemon per job.

In our implementation, if the 1appender task ever crashes, we
cause the parent map task to also crash. The Hadoop infrastruc-
ture detects the task failure and automatically spawns a new task to
attempt re-execution.

Observe that the records emitted by a map task are written to
T-files concurrently with task execution. If a map task ever fails
then the records emitted by the failed map task need to be dis-
carded. In our design discarding such records is done in the reduce
phase. To do so, (1) the iappender prepends source informa-
tion (namely, map task id/ attempt number, and record sequence
number—12 bytes overhead) to each record, and (2) during the re-
duce phase, the imerger learns of the identities of the failed map
tasks (such as, from the Hadoop JobTracker) and then uses the per-
packet source information to filter out records emitted by failed
map tasks. Note that the same mechanism can also be used handle
speculative execution—the output of speculatively executed tasks
which were killed will be discarded.

5.2.2 Sorting Stable Z-file Chunks

For the reasons discussed in Section 3, sorting of map output is
decoupled from map task execution. Rather than wait for all the
chunks of an Z-file to become stable, our implementation forces
a chunkserver to schedule a chunk for sorting using a chunkserver
daemon (running locally) whenever that chunk becomes stable (step
4 in Figure 7). The I/O path involved in sorting a chunk is primar-
ily sequential: The chunksorter daemon loads a chunk’s worth of
data to RAM (i.e., 128MB), performs an in-memory sort, and then
writes the records back to disk (step 5 in Figure 7) along with an
in-chunk index (see Section 4.2.3). Note that an Z-file is piece-
wise sorted; while the records in each chunk are sorted, the file as
a whole is not.

Sorting of stable chunks incurs a pair of additional disk I/O’s.
‘We considered an optimization path by sorting the chunks in RAM
before committing to disk. Implementing this optimization without
affecting performance requires substantial buffer space for holding
chunk data. Specifically, data for (1) chunks that are stable but
not yet sorted, (2) chunks that are being sorted, (3) chunks that
have been sorted and enqueued for writing to disk, and (4) chunks
currently being written to, should all be buffered in RAM. In the
absence of such buffer space, either data will need to be flushed to
disk whenever the system is under memory pressure or data gen-
eration must stall; otherwise, nodes will incur swapping. Since

machines in our cluster are RAM-constrained, setting aside such
buffer space meant that we had to significantly under program the
CPU (i.e., run fewer map or reduce tasks per machine), which in
turn can affect performance. Due to these reasons, we choose not
to pursue this path.

5.2.3 Determining Number of Reducers

Reducers are assigned input by key ranges. In Sailfish the
step of determining the split points (and therefore, the number of
reducers) is implemented using a workbuilder daemon pro-
cess. There is a single workbuilder process per job and it ex-
ecutes concurrently with the job. The workbuilder reads the
per-chunk indexes from Z-files as they become available (step 6 in
Figure 7). Once the map phase of a computation is complete, the
workbuilder process first uses a target amount of work per task
(for example, 2GB of data per reduce task) to determine the number
of reduce tasks. Next, the workbuilder process uses the per-
chunk indexes to construct suitable split points (i.e., key ranges)
based on the key distributions and thereby decide the per-task work
assignment. Note that, each split is handled by a separate reduce
task. The workbuilder then notifies the Hadoop JobTracker to
spawn the targeted number of reduce tasks. Each reduce task, on
start up, obtains its work assignment (namely, an Z-file, a range
of keys within that Z-file, and the set of chunks to read) from the
workbuilder (step 7 in Figure 7). Restricting a reduce task in-
put to a single Z-file was done to simplify implementation. Finally,
to handle workbuilder failures, such as, if the workbuilder
crashes, a new one is started in its place. It then rebuilds state from
the per-chunk indexes of the Z-files.

In practice, we find that the overheads (CPU/memory) imposed
by the workbuilder are fairly low. As noted in Section 4.2.3,
per-chunk indexes are typically a few KB in size. Consequently,
compared to task execution time, the workbuilder imposes a
relatively low overhead for both retrieving the per-chunk indexes as
well as processing them to gather statistics about the intermediate
data.

5.2.4 Generating Reduce Task Input From Z-files

The mechanisms used to generate reducer input are similar to those
in Stock Hadoop. As described in Section 2.1, in Stock Hadoop
a reduce task generates its input records by performing a merge
on the sorted runs of data it retrieves from the map tasks. Analo-
gously, with Sailfish, the reducer input is generated by merg-
ing the appropriate sorted runs from each of the Z-file chunks. To
perform the merge, a reduce task upon startup spawns a child pro-
cess, imerger, which uses the scan () API (see Section 4.2.3)
for retrieving its records from the chunks of the Z-file (step 8 in
Figure 7): Since there is no index at the Z-file level, the per-chunk
indexes are used by imerger to (only) retrieve those records that
correspond to the key-range assigned to the reduce task. Subse-
quently, the imerger merges the records using a heap-based im-
plementation [17] and then streams the records (ordered by key) to
its parent reduce task (step 9 in Figure 7).

As part of the merge step, the imerger uses the per-record
header information to filter out records generated by failed map
tasks (see Section 5.2.1) as well as duplicate records (i.e., by using
the per-record source assigned sequence number). For a more de-
tailed explanation of duplicate filtering, we refer the reader to the
Sailfish project wiki pages [6].

In terms of failure handling, whenever a reduce task fails, the
Hadoop infrastructure detects the failure and spawns a new task.
The newly spawned task has the same task id, but different at-
tempt number, when compared to its crashed counterpart. This

task contacts the workbuilder to obtain the work assignment
and thereby recovers the lost execution.

5.2.5 Recovering Lost Map Task Output

Whenever a chunk of an Z-file is lost (e.g., a chunk of an Z-file is
lost due to disk failure), the records in that chunk are irretrievably
lost. Since chunks of an Z-file were generated by multiple map
tasks appending data via the record append API, the lost data will
need to be regenerated by re-executing the appropriate map tasks.
To regenerate the lost data, additional bookkeeping information to
track the identity of map tasks that wrote to a given Z-file chunk
has to be maintained. In our implementation, the workbuilder
maintains this bookkeeping information and uses it to appropri-
ately trigger re-execution: First, when a map task completes execu-
tion, the iappender notifies the workbui l1der about the set of
chunks it wrote its output to. Second, whenever a chunk is lost, the
workbuilder notifies the Hadoop JobTracker to re-run the map
tasks that wrote to that chunk. In our implementation, a lost chunk
is detected when an imerger is unable to retrieve data from the
chunk. The imerger notifies the workbuilder, which then
triggers re-execution.

5.3 Disk Seek Analysis

To derive the number of disk seeks involved in the map phase with
Sailfish, note that the map output is committed to disk by the
chunkservers and then subsequently, read back, sorted, and written
back to disk by the chunksorter. The number of seeks is effectively
data dependent: Let the number of Z-files be ¢, and the number of
chunks in an Z-file be ¢. Now, (1) a lower bound on the number
of disk seeks incurred by the chunkservers for writing out the data
is ¢ * ¢, and (2) since the chunksorters perform sequential I/O, the
minimum number of seeks incurred by the sorters is 2x%*c. Hence,
a lower bound on the number of seeks is 3 * i * c.

To derive the number of disk seeks involved in the reduce phase
with Sailfish, observe that each reduce task retrieves its input
from a single Z-file and in the worst case must access every chunk
of that Z-file. With R reducers and c chunks per Z-file, the number
of disk seeks is proportional to c* 2. Note that, in contrast to Stock
Hadoop in which disk overheads are also dependent on the number
of map tasks, the disk overheads with Sailfish are independent
of the number of map tasks, but are dependent on the data volume.
Therefore, batching intermediate data in to as few chunks as possi-
ble is critical for Sailfish.

5.4 Miscellaneous Issues: Topology Aware Z-files

The Z-file abstraction provides the flexibility of choosing where
(i.e., local versus remote) to aggregate map output. Fault-tolerance
considerations influence this choice. Recall that a data loss which
involves a single chunk of an Z-file requires all the map tasks that
appended to that chunk to be re-executed. With local aggregation,
map tasks (from a given job that run on a machine) append their
output to Z-files whose chunks are stored locally; thus if a disk
fails, only map tasks on this machine may be affected. With per-
rack aggregation, map tasks write to chunks on the same rack; thus,
if a disk fails, only map tasks on that rack may be affected. With
global Z-files, map tasks can write to any chunk; if a disk fails, all
map tasks are potentially affected.

While the local approach is best with respect to fault-tolerance,
unfortunately, it did not scale on our cluster (which has 4 drives per
node) for two reasons. First, the number of files that can be con-
currently written to while still obtaining reasonable disk subsystem
performance is relatively low on a single machine (viz., about 32
files in our cluster). This causes the number of Z-files per job to be

small (i.e., 32). Second, for a given volume of data, fewer Z-files
means that a larger number of reduce tasks will need to retrieve
their input from each Z-file; effectively this increases the number
of scans on each chunk of the Z-file which lowers disk through-
put. We settled on per-rack aggregation since it provides reason-
able fault-containment while allowing for a large number of Z-files
to be concurrently written (viz., 512 files in our cluster). An eval-
uation of the various approaches for aggregation based on different
cluster/node configurations is outside the scope of this paper.

6 Experimental Evaluation

We deployed our Sailfish prototype in a 150-node cluster in
our lab and used it to drive a two-part experimental evaluation.

e The first part of the study involves using a synthetic bench-
mark to (1) evaluate the effectiveness of Z-files in aggregat-
ing intermediate data and (2) study the system effects of the
Sailfish dataflow path (see Section 6.2).

e The second part of the study involves using Sailfish to
run a representative mix of real Map-Reduce jobs with their
actual input datasets (see Section 6.3).

In summarizing our results, we find that job completion times with
Sailfish are in general faster when compared to the same job
run with Stock Hadoop (see Figure 8 and Table 3/Figure 11). There
are four aspects to the performance gains:

e 7-files enable better batching of intermediate data (see Sec-
tion 6.2.3). As a result, this leads to higher disk throughput
during the reduce phase (see Figure 10) and in turn, translates
to a faster reduce phase.

e Due to batching of intermediate data, Sailfish provides
better scale when compared to Stock Hadoop (see Figure 8).

e Dynamically planning the execution of the reduce phase en-
ables Sailfish to exploit the parallelism in a data depen-
dent manner (see Table 3 and Section 6.3.2). This approach
possibly simplifies program tuning.

e Map-phase execution with Sailfish is in general slower
when compared to Stock Hadoop. This is because records
are written to the RAM of a remote machine as opposed to
local RAM with Stock Hadoop. However, whenever there is
a skew in map output, the sorting of the map output can cause
the map phase of Stock Hadoop to be slower when compared
to Sailfish: with Stock Hadoop, due to the skew, some
tasks are able to sort the data entirely in RAM while others
incur the overheads of a multi-pass external sort. In con-
trast, with Sailfish, since map output is aggregated and
then sorted, the decoupling allows Sailfish to better par-
allelize the sorting of map output and thereby better handle
the skew (see Figure 12).

In what follows, we describe the details of our setup in Sec-
tion 6.1 and then present the results of our evaluation.

6.1 Cluster Setup

Our experimental cluster has 150 machines organized in 5 racks
with 30 machines/rack. Each machine has 2 quad-core Intel Xeon
E5420 processors, 16GB RAM, 1Gbps network interface card, and
four 750GB drives configured as a JBOD, and runs RHEL 5.6. The
connectivity between any pair of nodes in the cluster is 1Gbps.

We run Hadoop version 0.20.2, KFS (version 0.5) with modifi-
cations for the key-based variants defined in Section 4.2.1, and the

Parameter Values
Map tasks per node 6 Parameter Values
Reduce tasks per node | 6 Map tasks per node 6
Memory per Reduce tasks per node 6
map/reduce task 1.5GB Memory per
io.sort.mb =512 map/reduce task 512MB
Map-side sort io.sort.factor = 100 Memory per iappender | 1GB
parameters io.sort.record.percent = 0.2 Memory per imerger 1GB
io.sort.spill.percent = 0.95

(a) Stock Hadoop

Table 2: Parameter settings

(b) sailfish

other Sailfish components. On each machine we run an in-
stance of a Hadoop TaskTracker, a KFS chunkserver, and 4 KFS
chunksorter daemon processes (one sorter process per drive). The
disks on each machine are used by all the software components.

Parameter Settings: We configure Stock Hadoop using pub-
lished best practices [19] along with settings from Yahoo! clusters
for the Hadoop map-side sort parameters. Table 2(a) shows the pa-
rameters we used. Due to the differences in intermediate data han-
dling, the parameter settings for Sailfish (shown in Table 2(b))
are different from Stock Hadoop. The total memory budget im-
posed by either system is similar. Finally, during the experiments
none of the nodes in the cluster incurred swapping.

Sailfish Notes: For Sailfish, we use the rack-aware vari-
ant of Z-files described in Section 5.4. In the experiments, we
limit the number of concurrent appenders per chunk of an Z-file
to 128, enforced by having each iappender reserve 1MB of log-
ical space before it appends records to a chunk. We set the number
of Z-files to be 512 (the largest possible value given our system
configuration). Choosing a large value makes Sailfish perfor-
mance less sensitive to the specific choice. Furthermore, this set-
ting relieves our users from choosing the number of Z-files for their
specific job. We configure each of the chunksorter deamons to use
256MB RAM. Finally, for the merge involved in generating reducer
input, if imerger determines that the reducer input exceeds the
amount of RAM, it does an external merge. (Our implementation
for merging records is similar to that of Stock Hadoop’s.)

6.2 Evaluation With Synthetic Benchmark

In this part of the study, we evaluate Sailfish for handling in-
termediate at scale (viz., for data volumes ranging from 1TB to
64TB). We then discuss aspects of the Sailfish dataflow path as
it relates to (1) packing intermediate data in chunks, (2) overheads
imposed by chunksorter daemon, and (3) system effects of aggre-
gating map output on a rack-wide basis. We begin by describing
our synthetic benchmark program and then present the results.

6.2.1 Benchmark Description

To highlight the overheads of transporting intermediate data in iso-
lation, we implemented a synthetic MapReduce job in which, inten-
tionally, there is no job input/output. Our program, Benchmark,
performs a partitioned sort: (1) each map task generates a config-
urable number of records (namely, strings with 10-byte key, 90-
byte value over the ASCII character set), (2) the records are hash-
partitioned, sorted, and merged and then provided as input to the
reduce task, and (3) each reduce task validates its input records
and discards them. Our Benchmark is very similar to the Day-
tona Sort benchmark program that is used in data sorting competi-
tions [7]. Finally, with Benchmark, there is no skew: (1) all map
tasks generate an equal amount of data such that the keys are uni-
formly random and (2) all reduce tasks process roughly the same
number of keys.

6.2.2 Handling intermediate data at scale

For scale, we ran Benchmark while varying the volume of inter-
mediate data generated by the map tasks from 1TB to 64TB. For
both Stock Hadoop and Sailfish, we configure the number of
mapper tasks such that each mapper generates 1GB of output. For
the reduce phase, (1) with Stock Hadoop we provide a value for the
number of reduce tasks and (2) with Sailfish we configure the
workbuilder process to assign each reduce task approximately
1GB of data. In the experiments, the number of map/reduce tasks
varied from 1024 (for handling 1TB of data) to 65536 (for handling
64TB of data).

Figure 8 shows the results of our experiments. A key takeaway
from this graph is that the performance of Sailfish for handling
intermediate data scales linearly even upto large volumes of data
(viz., 64TB). On the other hand, the performance of Stock Hadoop
grows non-linearly as the volume of intermediate data to be trans-
ported begins to exceed 16TB.

The following discussion focusses on the system characteristics
during the reduce phase of execution. We defer the discussion of
the map phase of execution to Section 6.2.5.

Recall that, in this set of experiments, the amount of input data
to a reduce task is approximately 1GB. Based on the parameter
settings, the reducer input fits entirely in RAM. Furthermore, in
both systems, a reducer retrieves its input from the multiple sources
concurrently: with Stock Hadoop, a reduce task obtains its input
multiple mapper machines (viz., 30 by default) in parallel; with
Sailfish, an imerger issues concurrent reads to all the chunks
of the Z-file. However, the difference between the two systems is in
the efficiency with which the reduce task obtains its input, namely,
the amount of data read per seek which effectively determines the
disk throughput that can be achieved.

For Stock Hadoop, Section 2.2 details why data retrieved per
I/O shrinks and why this hurts its performance: the amount of
data a reducer pulls from a mapper, on average, is (1GB/R). For
Sailfish, since the number of Z-files is fixed (i.e., 512), there
is an increase in both the number of chunks in an Z-file as well
as the number of reduce tasks assigned to a given Z-file. While
the amount of data consumed by a reduce task is fixed (namely,
1GB), this data is spread over almost all the chunks of the Z-file.
Consequently, the amount of data retrieved per I/O by a reduce
task from a single Z-file chunk begins to decrease. However, due
to better batching (see Section 6.2.3), the amount of data read per
I/O with Sailfish is an order of magnitude higher when com-
pared to Stock Hadoop (see Figure 9). The difference in the amount
of data read per seek translates to higher disk read throughput for
Sailfish in the reduce phase leading to better job performance.
‘We highlight this effect next.

Figure 10 shows the disk throughput obtained with Stock Hadoop
as well as Sailfish for runs of Benchmark in which the vol-
ume of intermediate data is 16TB. Given our 1GB limit of data for
each map or reducer task, this job involved executing 16384 map-
pers and 16384 reducers. For Stock Hadoop, the average amount
data retrieved by a reducer from a map task is about 70KB. For
Sailfish, the average amount data retrieved by a reducer from
an Z-file chunk is about 1.5MB. With fewer seeks and higher amount
of data read per seek, the disk read throughput obtained by Sailfish
on a single machine averages to about 35SMB/s. On the other hand,
with Stock Hadoop, due to higher seeks and less amount of data
read per seek, the observed disk throughput averages to about 20MB/s.
As a result, this effect causes the reduce phase in Stock Hadoop
to be substantially longer when compared to Sailfish’s reduce
phase for the same job (viz., 3.5 hours when compared to 1.75
hours).

32

Stock Hadoop =——+—
Sailfish

- S

per retrieval (in MB)

s
J/
/
o

Job run-time (in Hours)
Data read by a reduce task

°
2

Stock Hadoop
Sailfish

Stock Hadoop =——+—
Sailfish | 40 |

Disk Read Throughput (MB/s)

1 2 4 8 16 32 64 128 1 2 4
Intermediate data size (TB)

Figure 8: Variation in job run-time with Figure 9:
the volume of intermediate data. Note that

the axes are log-scale. Sailfish.

Note that our implementation of Sailfish can be tuned fur-
ther. For instance, rather than sorting individual chunks when they
become stable, multiple chunks can be locally aggregated and sorted.
This optimization increases the length of the “sorted runs” which
can lead to better scale/performance. That is, when compared to
Figure 9, this optimization can increase the data read per retrieval
at larger values of intermediate data size.

Finally, there is also the issue of implementation differences be-
tween the two systems when transporting intermediate data. Based
on the above results (coupled with the observation that there is no
data skew), much of the gains in Sailfish are due to better disk
I/0O in the reduce phase. Therefore, unless the I/O sizes in both
systems are comparable, we do not believe the implementation dif-
ferences have a significant impact on performance.

6.2.3 Effectiveness of Z-files

For a given Z-file our atomic record append implementation tries
to minimize the number of chunks required for storing the interme-
diate data. The experimental results validated the implementation.
The chunk allocation policy ensured that the number of chunks per
Z-file was close to optimal (i.e., size of Z-file / KFS chunksize).
Furthermore, except for the last chunk of an Z-file, the remaining
chunks were over 99% full. This is key to our strategy of maximiz-
ing batching: a metric discussed in Section 4.2.4 was the number
of files used to store intermediate data.

6.2.4 Chunk sorting overheads

For 7Z-files, whenever a chunk becomes stable, the chunkserver
utilizes the chunksorter daemon to sort the records in the chunk.
The chunksorter daemon is I/O intensive and performs largely se-
quential I/O: First, it spends approximately 2-4 seconds loading a
128MB chunk of data into RAM. Second, it spends approximately
1-2 seconds sorting the keys using a radix trie algorithm. Finally, it
spen4ds approximately 2-4 seconds writing the sorted data back to
disk”.

6.2.5 Impact of network-based aggregation

The improvements in the reduce phase of execution with Sailfish
come at the expense of an additional network transfer. During the
map phase, in Stock Hadoop, a map task writes its output to the
local filesystem’s buffer cache (which writes the data to disk asyn-
chronously). With Sailfish, the map output is committed to
RAM on remote machines (and the chunkserver aggregates and

*Since writing out the sorter output file is a large sequential
I/O, as a performance optimization, our implementation uses the
posix_fallocate () APIfor contiguous disk space allocation.

8

Intermediate data size (TB)

Data read per retrieval by
a reduce task with Stock Hadoop and

]‘6 .;2 (;4 128 0 (;.5 ‘l l‘.5 ‘2 2‘.5 ‘3 3‘.5 4
Time (in hours)

Figure 10: Disk read throughput in the re-

duce phase with Sailfish is higher and

hence reduce phase is faster (int. data size

=16TB).

writes to disk asynchronously). This additional network transfer
causes the map phase of execution to be higher by about 10%.
From a practical standpoint, aggregating map output on per-rack
basis (see Section 5.4) minimizes the impact of the additional traf-
fic on the network for two reasons. First, clusters for data inten-
sive computing are configured with higher intra-rack connectivity
when compared to inter-rack capacity. For instance, in Yahoo!’s
clusters, the connectivity is 1Gbps between any pair of intra-rack
nodes when compared to 200Mbps between inter-rack nodes. Sec-
ond, due to locality optimizations in the Hadoop job scheduler (i.e.,
schedule tasks where the data is stored) the intra-rack capacity is
relatively unused and Sailfish leverages the unused capacity.
Finally, network capacity within the datacenter is slated to sub-
stantially increase over the next few years. Clusters with 10Gbps
inter-node connectivity (on a small scale) have been deployed [25];
larger clusters with such connectivity will be commonplace. We ex-
pect Sailfish to be deployed in such settings, where maximiz-
ing the achievable disk subystem bandwidth and in turn effectively
utilizing the available network bandwidth becomes paramount.

6.3 Evaluation With Actual Jobs

For this part of the study we first construct a job mix by develop-
ing a simple taxonomy for classifying Map-Reduce jobs in general.
Our taxonomy is based on an analysis of jobs we see in Yahoo!’s
clusters (see Section 6.3.1). Using this taxonomy, we handpicked
a representative mix of jobs to drive an evaluation using actual
datasets and jobs (from data mining, data analytics pipelines) run
in production clusters at Yahoo!. We then present the results of our
evaluation.

6.3.1 Constructing a Job Mix

Based on conversations with our users as well as an analysis of our
cluster workloads, we use the following taxonomy for classifying
MapReduce jobs in general:

1. Skew in map output: Data compression is commonly used
in practice, and users organize their data so as to obtain high
compression ratios. As a result, the number of input records
processed by various map tasks can be substantially different,
and this impacts the size of the output of the task.

2. Skew in reduce input: These are jobs for which some parti-
tions get more data than others. The causes for skew include
poor choice of partitioning function, low entropy in keys, etc.

3. Incremental computation: Incremental computation is a
commonly used paradigm in data intensive computing en-
vironments. A typical use case is creating a sliding window

900 — Reduce
80() | = Map T]
3700+ k
2600} B
2500 B
5400 | 2

2300
iI (] EI Hl ‘l
H S H S H S H S H

;200*
S H S S H

100
Nday Behavior Click Segment
LogCount LogProc LogRead Model Model Attribution Exploder

Figure 11: Time spent in the Map and Reduce phases of execu-
tion for the various MapReduce jobs. At scale, Sailfish (S)
outperforms Stock Hadoop (H) between 20% to a factor of 5.

over a dataset. For instance, for behavioral targeting, /N-day
models of user behavior are created by a key-based join of a
1-day model with the previous [NV-day model.

4. Big data: These are data mining jobs that process vast amounts
of data, e.g., jobs that process a day of server logs (where the
daily log volume is about 5STB in size). With these jobs, the
output is proportional to the input (i.e., for each input record,
the job generates an output record of proportional size).

5. Data explosion: These are jobs for which the output of the
map step is a multiple of the input size. For instance, to
analyze the effectiveness of an online ad-campaign by geo-
location (e.g., impressions by (1) country, (2) state, (3) city),
the map task emits multiple records for each input record.

6. Data reduction: These are jobs in which the computation
involves a data reduction step which causes the intermediate
data size (and job output) to be a fraction of the job input.
For example, there are jobs that compute statistics over the
data by processing a few TB of input but producing only a
few GB of output.

Table 3 shows the jobs that we handpicked for our evaluation. We
note that several of these are Pig scripts containing joins and co-
grouping, and produce large amounts of intermediate data. Of these
jobs, BehaviorModel, ClickAttribution are CPU and data inten-
sive, while the rest are data intensive. Finally, note that in all of
these jobs, with the exception of LogCount, there is no reduction
in the intermediate data size when compared to the job input’s size.

6.3.2 Evaluation With Representative Jobs

Hadoop best practices [19] recommend using compression to min-
imize the amount of I/O when handling intermediate data. Hence,
for this set of experiments, for handling intermediate data we en-
abled LZO-based compression with Stock Hadoop and extended
our Sailfish implementation to support an LZO codec.

Table 3 shows the data volumes for the various jobs as well
as the number of map/reduce tasks. Note that multiple waves of
map/reduce tasks per job is common.

For this set of experiments, the workbuilder was configured
to assign upto 2GB of data per reduce task (independent of the
job). This value represents a trade-off between fault-tolerance (i.e.,
amount of computation that has to be re-done when a reducer fails)
versus performance (i.e., a large value implies fewer reducers, pos-
sibly improving disk performance due to larger sequential I/Os). As

part of follow-on work [8], we are exploring ways of eliminating
this parameter. This would then allow the reduce phase of execu-
tion to be adapted completely dynamically based on the available
cluster resources (viz., CPUs).

Figure 11 shows the results of running the various jobs using
Stock Hadoop as well as Sailfish. Our results show that as
the volume of intermediate data scales, job completion times with
Sailfish are between 20% to 5x faster when compared to the
same job run with Stock Hadoop. There are three aspects to the
gains:

e Using Z-files for aggregation: In terms of the reduce phase
of computation, except for the LogProc and LogRead jobs
in which the volume of intermediate data is relatively low
(see Table 3), for the remaining jobs there is a substantial
speedup with Sailfish. The speedup in the reduce phase
is due to the better batching of intermediate data in Z-files,
similar to what we observed with Benchmark.

e Decoupling sorting from map task execution: From our
job mix, we found that skew in map output impacted Log-
Proc and NdayModel jobs: (1) in the LogProc job, a few
of the map tasks generated as much as 30GB of data, and
(2) in the NdayModel job, which involves a JOIN of an N-
day dataset with a 1-day dataset, about half the map tasks
that processed files from the /N-day dataset generated about
10GB of data while the remaining tasks generated 450MB of
data. Figure 12 shows the distribution of map task comple-
tion times for NdayModel job. While the skew affects map
task completion times in both Stock Hadoop and Sailfish,
the impact on Stock Hadoop due to the sorting overheads in-
curred by map tasks is much higher. This result validates
one of our design choices: decoupling the sort of map output
from map task execution. In these experiments, particularly
for the LogProc job, such a separation yielded upto a 5x im-
provement in application run-time.

e Making reduce phase dynamic: Dynamically determining
the number of reduce tasks and their work assignment in a
data dependent manner helps in skew handling as well as in
automatically exploiting the parallelism in the reduce phase.
We illustrate these effects using the LogRead job in which
there is a skew in the intermediate data (particularly, as Fig-
ure 13 shows, partitions 0-200 had more data than the rest—
4.5GB vs 0.5GB). As shown in Table 3 Sailfish used
more reduce tasks than Stock Hadoop (800 compared to 512),
and proportionately more reducers were assigned to those
partitions (i.e., as shown in Figure 14, with 2GB of data per
reduce task, Z-filep to Z-fileago were assigned 3 reducers per
Z-file while the remaining Z-files were assigned 1 reducer
apiece). As a result, by better exploiting the available paral-
lelism, the reduce phase in Sailfish is much faster com-
pared to Stock Hadoop. Our approach realizes these benefits
in a seamless manner without re-partitioning the intermediate
data and simplifies program tuning.

Finally, to study the effect of change in data volume, we ran the
ClickAttribution job using Sailfish where we increased the in-
put data size (from 25% to 100%). We found that the workbuilder
deamon automatically caused the number of reduce tasks to in-
crease proportionately (i.e., from 4096 to 8192) in a data dependent
manner.

Job Name Job Characteristics Operators Input size | Int. data size | # of mappers # of reducers Run time
Stock Hadoop | Sailfish | Stock Hadoop | Sailfish
LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output | GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input | GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00
FILTER
SegmentExploder | Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,
FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.

40

T T T T T T 5000

4

e Stock Hadodp
8 35 Sailfish] 4500 |
5 o~ e
2 @ 4000 | i
= 30 2% 3
g > 3500 % =
=
g % £ 3000 f bl
g ~ S Qg
o 20 Q2500 b oS
g N [l
3 s & 2000 - <9
= S 1500 | E .0
E w0 S z 3!
o Q1000 - 4]
g8 > 500
By = 0 0
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Map Task # Partition # Partition #

Figure 12: Distribution of map task run
time for NdayModel job. Skew in map
output sizes affects task completion times
for both Stock Hadoop and Sailfish,
but the impact for Stock Hadoop is much
higher.

ducer input).

6.3.3 Impact of data loss in Z-files

In our setting the intermediate data is not replicated: Stock Hadoop
does not implement it and for a fair comparison, we did not enable
replication for Z-files. Hence, in the event of data loss (viz., caused
by a disk failure), the lost data has to be regenerated via recompu-
tation. When a disk fails, the required recomputations on the two
systems are:

e Stock Hadoop: Since map tasks store their output on the local

disks by arbitrarily choosing a drive, the expected number of

;. # of tasks run on a node
recomputes 1s: # of drives on a node *

e Sailfish: With 512 Z-files and 30 machines per rack,
with per-rack Z-files, a map task running on a node will write
to all the chunkservers in the rack. Since a chunkserver on
a node arbitrarily chooses a drive to store a chunk file, the

expected number of recomputes is: #0f tasks run on a rack
of drives on a node

Though these recompute tasks can be run in parallel, their effect
on job runtimes is data dependent. For jobs where there is a skew
in map output, the cost of recompute with Stock Hadoop is much
higher than Sailfish. For instance, for the LogProc job in
which over 90% of the job run-time is in the map phase of com-
putation, recomputes can cause the overall job run-time to nearly
double: The run-time with Stock Hadoop increases from 2:18 to
4:06, while with Sailfish it increases from 0:42 to 1:08. For
the other jobs where there is no skew in map output, regenerating
the lost data requires about 1 to 2 waves of map task execution
which causes a 10-20% increase in job runtime in either system.

Figure 13: Distribution of the size of the
intermediate data files in LogRead job.
For this job there is a skew in distribution
of data across partitions (i.e., skew in re-

Figure 14: For the LogRead job
Sailfish handles skew in interme-
diate data by assigning reduce tasks in
proportion to the data in the Z-file (see
Figure 13).

7 Related Work

The performance of Hadoop Map-Reduce framework has been stud-
ied recently [16, 22, 27]. In [22], they find that Hadoop job perfor-
mance is affected by factors such as, lack of a schema which im-
pacts selection queries, lack of an index which affects join perfor-
mance, and data parsing overheads. Reference [12] shows how to
improve Hadoop performance by augmenting data with a schema
as well as an index and then using the augmented information to
substantially speed up select/join operators. These mechanisms are
applicable with Sailfish as well. In [16], they identify addi-
tional factors that affect Hadoop performance such as, I/O mode
for accessing data from disk, and task scheduling. The paper also
describes ways to tune these factors to improve performance by 2.5
to 3.5x. The same paper also notes that another potential source
of performance improvement is in modifying how the intermedi-
ate data is handled. Our work addresses this aspect and our results
demonstrate substantial gains.

TritonSort [24, 25] was developed for doing large-scale data sort-
ing. Recently, in an effort that parallels our Sailfish work, the
TritonSort architecture has been extended with a Map-Reduce im-
plementation called ThemisMR [23]. While an experimental com-
parison of the two systems is outside the scope of this paper, we
briefly describe the ThemisMR design and then contrast it with
Sailfish. The design goals of ThemisMR are similar to some
our objectives in building Sailfish: (1) ThemisMR focuses on
optimizing disk subsystem performance when handling intermedi-
ate data at scale and (2) ThemisMR tries to mitigate skew in reducer
input. With ThemisMR, a Map-Reduce computation consists of
two distinct phases, namely map and shuffle followed by sort and

reduce. For handling intermediate data, the first phase involves
large sequential writes, while the second phase involves large se-
quential reads. Through careful buffer management their design en-
sures that intermediate data touches disk exactly twice using I/O’s
that are long/sequential thereby maximizing disk subsystem per-
formance. Next, for mitigating skew in reducer input, ThemisMR
contains an optional sampling phase which is used to determine
partition boundaries. Finally, ThemisMR considers a point in the
design space where cluster sizes are small (on the order of 30-100
nodes) in which component failures are rare and hence, forgoes
fault-tolerance (i.e., entire job must be re-run whenever there is a
failure). However, for large clusters consisting of 100’s to 1000’s
of nodes, it is well-known that failures are not uncommon [9]. For
large clusters, the ThemisMR paper [23] notes that requiring entire
jobs to be re-run whenever there is a failure can adversely impact
performance. Contrasting the two systems, (1) Sailfish pro-
vides fault-tolerance while still improving application performance
and (2) Sailfish tries to mitigate skew in reducer input with-
out an explicit sampling step. In addition, within each of the two
phases of ThemisMR, to avoid (unnecessary) spilling of data to
disk (e.g., under memory pressure) their design relies on a memory
manager that forces data generation to appropriately stall. How-
ever, as noted in their paper, carefully choosing memory manage-
ment policies and tuning them to maximize performance (such as,
by avoiding deadlocks and by minimizing stalls) is non-trivial.

Dealing with skew in the context of Map-Reduce has been stud-
ied by [18, 20, 23, 28]. In these systems, a job is executed twice:
The first execution samples the input dataset to determine the split
points, which are then used to drive the actual execution over the
complete dataset. The objective here is to minimize the skew in in-
termediate data (i.e., skew in the reducer input). With Sailfish,
by gathering statistics over the data at run-time, we try to achieve
the same objective without requiring an explicit sampling step.

An alternate approach for handling skew in reducer input is to
adaptively change the map-output partitioning function [29] for
Hadoop jobs. In their work, the number of partitions is an input
parameter and is fixed apriori; then, by sampling the output of a
small number of map tasks, they mitigate skew by dynamically
constructing the partitioning function (i.e., split points) such that
the partitions will be balanced. Their methodology is similar to
Sailfish in that they mitigate skew by sampling the intermedi-
ate data. However, since they assign one reduce task per partition
and the number of partitions is fixed apriori, this parameter has
to be carefully chosen. In particular, as the volume of intermedi-
ate scales, and jobs are run with larger number of partitions, while
their techniques may mitigate skew, the performance gains are lim-
ited by Hadoop’s intermediate data handling mechanisms.

Augmenting datasets with an index, particularly affer the dataset
has been generated is known to be expensive. For instance, in [12],
they find that the one-time cost involved in building an index over a
2TB input dataset using 100 nodes takes over 10 hours. In contrast,
with Sailfish the augmentation of an index to an Z-file chunk is
done as part of intermediate data generation and hence, incurs little
overhead.

Starfish [14] uses job profiling techniques to help tune Hadoop
parameters including those related to handling of intermediate data
(i.e., the map-side sort parameters and the number of reduce tasks).
With Starfish, the computation has to be run once to obtain the job
profile and it then suggests input parameter values for subsequent
runs of the same job. The dynamic data-driven approach to param-
eter tuning in Sailfish achieves the same gains without having
to run the job once to determine the job profile. Further, as our
analysis and results show, the gains achievable by tuning Hadoop

are inherently limited by Hadoop’s mechanisms for handling inter-
mediate data; Sailfish improves performance further by better
batching of disk I/O.

8 Summary and Future Work

We presented Sailfish, an alternate Map-Reduce framework
built around the principle of aggregating intermediate data for im-
proved disk I/O. To enable aggregation, we developed Z-files as an
abstraction, implemented as an extension of the distributed filesys-
tem. Our Sailfish prototype runs standard Hadoop jobs, with
no changes to application code, but uses Z-files to transport inter-
mediate data (i.e., the output of the map step). We demonstrated
both improved performance and less dependence on user-tuning.

As part of on-going research, there are several avenues of work
that we are currently exploring. First, by adding a adding a feed-
back loop to the reduce phase of Sailfish it becomes possi-
ble to re-partition the work assigned to a reduce task at a key-
boundary [8]. Such dynamic re-partitioning enables elasticity for
the reduce phase, thereby improve utilization in multi-tenanted clus-
ters. Second, for mitigating the impact of failures, we are evaluat-
ing mechanisms for replicating intermediate data thereby minimiz-
ing the number of recomputes. Third, Z-files provide new opportu-
nities for debugging, particularly, the reduce phase of a MapReduce
job, saving valuable programmer time.

The Sailfish designis geared towards computations in which
the volume of intermediate data is large. As we noted in Section 1,
for a vast majority of the jobs in the cluster, the volume of inter-
mediate data is small. For such jobs alternate implementations for
handling intermediate data may afford better performance. Though
the current versions of the Hadoop framework forces all jobs to use
the same intermediate data handling mechanism, the next genera-
tion of the Hadoop framework (namely, YARN [1]) relaxes this re-
striction. The YARN architecture includes hooks for customizing
intermediate data handling, including a per-job application mas-
ter that coordinates job execution. Incorporating many of the core
ideas from this paper into an application master and task execution
layer is the focus of ongoing work [5].

Sailfish is currently deployed in our lab and is being eval-
uated by our colleagues at Yahoo!. We have released Sailfish
and the other software components developed as part of this paper
as open source [6].

9 Acknowledgements

The authors would like thank Tyson Condie for providing detailed
feedback and insightful suggestions on early drafts. We thank Chris
Douglas, Carlo Curino, and the anonymous reviewers for helpful
comments and feedback. We also thank Igor Gashinsky for provid-
ing us the cluster used in our experiments.

10 References

[1] Apache Hadoop NextGen MapReduce (YARN).
http://hadoop.apache.org/docs/r0.23.0/
hadoop-yarn/hadoop-yarn-site/YARN.html.

[2] Apache Hadoop Project.
http://hadoop.apache.org/.

[3] HDFS. http://hadoop.apache.org/hdfs.

[4] KFS. http://code.google.com/p/kosmosfs/.

[5] Preemption and restart of mapreduce tasks.
http://issues.apache.org/jira/browse/
MAPREDUCE-4585.

[6] Sailfish. http://code.google.com/p/sailfish/.

(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

Sort benchmark home page.
http://sortbenchmark.org/.

G. Ananthanarayanan, C. Douglas, R. Ramakrishnan,

S. Rao, and I. Stoica. True Elasticity in Multi-Tenant
Clusters through Amoeba. In ACM Symposium on Cloud
Computing, SoCC’12, October 2012.

J. Dean. Software engineering advice from building
large-scale distributed systems.
http://research.google.com/people/jeff/
stanford-295-talk.pdf.

J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. In OSDI’04: Proceedings of the
6th conference on Symposium on Operating Systems Design
& Implementation, 2004.

J. Dean and S. Ghemawat. Mapreduce: A flexible data
processing tool. Communications of the ACM, 53(1):72-77,
January 2010.

J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty,
and J. Schad. Hadoop++: Making a yellow elephant run like
a cheetah (without it even noticing). Proc. VLDB Endow.,
3(1), 2010.

S. Ghemawat, H. Gobioff, and S. T. Leung. The Google file
system. In Proceedings of the nineteenth ACM symposium on
Operating systems principles, volume 37 of SOSP ’03, pages
29-43, New York, NY, USA, Oct. 2003.

H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B.
Cetin, and S. Babu. Starfish: A self-tuning system for big
data analytics. Systems Research, pages 261-272, 2011.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. In EuroSys '07: Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer
Systems 2007, pages 59-72, 2007.

D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The performance of
mapreduce: an in-depth study. Proc. VLDB Endow., 3(1),
Sept. 2010.

D. E. Knuth. Sorting and Searching, volume 3 of The Art of
Computer Programming. Addison-Wesley Professional,
second edition, May 1998.

Y. Kwon, M. Balazinska, B. Howe, and J. Rolia.
Skew-resistant parallel processing of feature-extracting
scientific user-defined functions. In Proceedings of the 1st
ACM symposium on Cloud computing, SoCC ’10, pages
75-86, New York, NY, USA, 2010. ACM.

A. Murthy. Apache hadoop: Best practices and anti-patterns.
http://developer.yahoo.com/blogs/hadoop/
posts/2010/08/apache_hadoop_best__
practices_a/.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and

A. Tomkins. Pig latin: a not-so-foreign language for data
processing. In SIGMOD ’08: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data,
pages 1099-1110, 2008.

J. Ousterhout et al. The case for ramclouds: Scalable
high-performance storage entirely in dram. SIGOPS
Operating Systems Review, 43(4):92-105, December 2009.
A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,

S. Madden, and M. Stonebraker. A comparison of
approaches to large-scale data analysis. In Proceedings of the
35th SIGMOD international conference on Management of
data, SIGMOD ’09, pages 165-178, New York, NY, USA,
2009. ACM.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

A. Rasmussen, M. Conley, R. Kapoor, V. The Lam,

G. Porter, and A. Vahdat. ThemisMR: An I/O Efficient
MapReduce. Technical Report CS2012-0983, Department of
Computer Science and Engineering, University of California
at San Diego, July 2012.

A. Rasmussen, M. Conley, G. Porter, and A. Vahdat.
Tritonsort 2011. http://sortbenchmark.org/
2011_06_tritonsort.pdf.

A. Rasmussen, G. Porter, M. Conley, H. V. Madhyastha,

R. N. Mysore, A. Pucher, and A. Vahdat. Tritonsort: a
balanced large-scale sorting system. In Proceedings of the
8th USENIX conference on Networked systems design and
implementation, NSDI’11, Berkeley, CA, USA, 2011.

S. Rao, R. Ramakrishnan, A. Silberstein, M. Ovsiannikov, D.
Reeves. Sailfish: A framework for large scale data
processing. Technical Report YL-2012-002, Yahoo! Labs.
M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden,

E. Paulson, A. Pavlo, and A. Rasin. Mapreduce and parallel
dbmss: friends or foes? Commun. ACM, 53(1):64-71, Jan.
2010.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,

S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive: a
warehousing solution over a map-reduce framework. Proc.
VLDB Endow., 2(2), 2009.

R. Vernica, A. Balmin, K. S. Beyer, and V. Ercegovac.
Adaptive MapReduce using Situation-Aware Mappers. In
International Conference on Extending Database Technology
(EDBT), 2012.

