High Performance Computing

13M37098
Yuki Takasaki

Review Paper

“On Distributed File Tree Walk of Parallel File
System”

[SC’12 Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis]

Jharrod LaFon*T, Satyajayant Misra*,and Jon Bringhurstt

*New Mexico State University, TLos Alamos National
Laboratory

Review Paper

“Mastiff: A MapReduce-based System for Time-Based
Big Data Analytics”

[Cluster Computing (CLUSTER), 2012 IEEE International Conference on]

Sijie Guo*, Jin Xiong, Weiping Wang*, Rubao Leet

*State Key Laboratory of Computer Architecture Institute of Computing
Technology, CAS Beijing, China

TDept. of Computer Science and Engineering Ohio State University
Columbus, USA

Review Paper

“Comparative Performance Analysis of a big Data NORA
Problem on a Variety of Architectures”

[Collaboration Technologies and Systems (CTS), 2013
International Conference on]

Peter M. Kogge*, David A. BaylissT

*Dept. of Computer Science and Engineering Univ. of Notre
Dame Notre Dame, IN, USA

TLexis Nexis Risk Solutions, Inc. Boca Raton, FL, USA

Outline
Abstract

Introduction
Related work
Building blocks of our framework

A framework for distributed parallel file system
traversal

6. Experimentation and empirical results
7. Conclution
* Comment

Al

1.Abstract

* Research goal is proposing three algorithm
— Improve Centralized Parallel File Tree Walk
 DRAQS : Distributed Random Queue Splitting
— All processes are logically equivalent
 PA-DRQS : Proximity Aware Distributed Random
Queue splitting
— Proximate aware version of DRQS

2.Introduction

 The amount of scientific data produced today has been
increasing and scientists often use sophisticated tools to
write application.

 However, the tools and algorithms used to traverse file

systems are often serial, making data archiving or searching
time consuming.

* The few tools that exist for parallel processing and archiving
use centralized parallel algorithms.

— For load balancing and work distribution
— Leading to unnecessarily high communication overhead

Problem Motivation
* Parallel tree traversal problem

— centralized parallel algorithms have communication
overhead
* Example : MapReduce uses master and slave strategy.

* The master process need to keep track of which slave
processes are busy

* Each new task requires two messages of the dispatch of work
unit from the master to slave and the reply from the slave to
the master

* The master process must maintain a global list of tasks to be
performed

Propose of this study

 We propose a framework and three efficient
algorithms.
— the improvement in running time and message
complexity
* By dispensing with the synchronization requirement
* By avoiding a centralized control process altogether

3.Related Work

Centralized Parallel File Tree Walk Algorithm

— The first centralized parallel (CP) file tree traversal
algorithm was developed in house at LANL (2007)

— This algorithm is used a dynamic centralized load
balanceing technique.

Algorithm 1-1

Algorithm 1 Centralized Parallel File Tree Walk

1: S = () for slave processes, root for the master

2: if processor rank == 0 then

3 =0

4: while |S| > 0 do

5: Receive Message from Processor j

6: if Message 1s a work request then

7: p = S.dequeue()

8: Send p to j

9: else

10: S.queue(Message) {Work to be processed }
11: end if

12: end while

11

Algorithm 1-2

13: else

14: repeat

15: if |S| =0 then

16: Send work request to Processor 0
17: Receive Message from Processor 0 into path
18: end if

19: if path is termination sentinel then
20: exit

21: end if

22: if path is a file then

23: process(file)

24: else

25: S=40

26 for all child in path.children() do
27: S .queue(child)

28: end for

29: Send S to Processor 0

30: end if

31: until path ==

32: end if

12

Problem of CP algorithm

e Until the queue is empty, the master process sends
a portion of work to each slave process, and then
waits for a response from each one

— Requires process synchronization

Communication cost

Experiment environment

— Supercomputer at LANL using a
471TB Panasas file system
consisting of approximately 6.5
million files.

Observe that communication
strictly occurs between the
master prosess and slaves, but

never between two slaves

30

25

20

15

Sending Rank

10

5

OE_

Transfer Totals (B)

0

5

1.6e+09
1.4e+09
1.2e+09
1e+09
| 8e+08
6e+08
4e+08
2e+08

10 15 20 25 30
Receiving Rank

Fig. 1. Centralized Parallel Tree Walk: Communication Cost

14

4.Building blocks of our framework
e A. Parallel Tree Traversal

— Our goal is to design a parallel algorithm for parallel file
systems tree exploration.

— We seek an ideal load balance, with equitable load
distribution

* All the parallel processes performs the same amount of work

B.Inter-Process Communication

without Global Synchronization

* We seek to visit all nodes within a tree in parallel,
as quickly as possible.

* One way to achieve this efficiently is by avoiding
global process synchronization.
— Synchronization between all processes in a parallel job

must be coordinated by way of communication, and this
is known to be costly.

Pair-wise commuhnication

* Pair-wise communication refers to a message
transfer that occurs between two processes.

* Collective communication is a message exchange
which is meant for all process.
— Collective communications are a form of synchronization
* We use pair-wise communication which is non-
blocking

5. A framework for distributed parallel

file system traversal

e A.Design Principles for the Framework (1)

— Parallelism via the Message Passing Interface:
* We implement our algorithms using the MPI

— Anyone-Asks-Anyone:
* There is no master process

* All processes in the system are equal
* Any process can ask any other process for work

— Light Weight Process v/s Single Process :
* Use multiple threads/processes on each compute node

* One of threads in node seek work from remote processes, after
which all co-located threads/processes can share the work

A.Design Principles for the Framework (2)

* Random Splitting v/s Equal Splitting :

— Use random splitting which may be better technique than equal splitting in balancing
amortized load

* Termination Detection:

— Use Dijkstra’s Token Algorithm

All processes are logically ordered (numerical order is used for convenience)

* Each process can be colored black or white, every process starts as white

* Atoken can be passed between processes, and the token is also colored black or white

. V\)/hen root process (Rank 0) is idle, it generates a white token and sends it to the next process (Rank
1

* Any time a process sends work to a process with a lesser rank, it colors the token black, colors itself
white, and then forwards the token

* If a black process receives a token then it colors the token black, colors itself white, and then
forwards the token

* |If a white process receives a token then it forwards the token unchanged, tokens are only forwarded
by a process when it is idle

* termination is detected when the root process receives back a white token.

B.Distributed Random Queue Splitting

Except for the purposes of

termination initialization and

detection, all processes are
logically equivalent.

process, and no centralized
work queue.

Each process maintains its
own local work queue

parallel file system

Algorithm 2 Distributed Random Queue Splitting

There is no centralized master

1: S = root for the Rank 0 process,and S = () for processes

of higher rank.

2: T'erminated = False.
3: while not T'erminated do

a

=

8:
9:
10:
11:

12:

checkForRequests() and satisfy. {Checks for work re-
quests from peers}
if | S| == 0 then
sendWorkRequest(). {Sends work request to random
peer}
else
process(S .dequeue()).
end if
if |S| == 0 then
checkForTermination(). { Checks for termination con-
ditions}
end if

13: end while

Rank O contais the root of the

20

C.Proximity Aware Distributed Random
Queue Splitting (PA-DRQS) Algorithm

* The cost for two co-located processes (same compute
node) to participate in pair-wise communication is
generally much lower than two processes running on
separate compute nodes

— Due to the absence of the latency that is introduced in each hop
of network communication

* The cost difference is also enhanced by MPI’s
choice of shared memory segments for
communication between co-located processes.

Co-located process

@

Fig. 2. Co-located processes have lower communication cost in comparison
with non co-located processes

Shared Memory

22

Work Request Ordering

It is preferable for a process to request work from a
co-located process before asking a remote process.

We have desighed and implemented PA-DRQS
— A proximity aware version of DRQS

We impose an order to the request.

— In PA-DRQS, a process asks other processes for work in
increasing order of their distance from it.

We must determine which ranks are co-located.

Way to determine which ranks are co-
located (1)

* Each process obtains it network number, as defined by
RFC 1166.

* An MPI_All gather operation is performed so that
every process has the complete list of all networks
numbers. This is a synchronous step.

— After the MPI_AIll_gather, further operations are compute
node local

e Each process, having the entire array of network
numbers, sort them

— We use OuickSort in our implementation

Way to determine which ranks are co-
located (2)

* Each process then determines its location in the list,
and then determines its group number, which is
refereed to as its color.

— The resulting lists contains all network numbers, where
equal network numbers are adjacent in the list.

— Each group of identical network numbers within the list is
then assigned a group number.

* Each process uses its color as a parameter to
MPI_Comm_split, which creates an MPI Communicator
containing co-located (same color) processes on each
compute node within the compute cluster.

Way to determine which ranks are co-
located (3)

* From that information, a list of processes is created

— co-located ranks are at the beginning (starting with local
Rank 0) and non local ranks comprise the remainder of
the list

* Each process has an additional rank.

— Global rank : a unique identifier within the entire job

— Local rank : a unique identifier among co-located
processes

Algorithm 3

Algorithm 3 PA-DRQS: Proximity Aware Distributed Ran-
dom Queue Splitting

1:

10:
11:
12:

13:
14:

S = root for the Rank 0 process, and S = () for processes
of higher rank.
Terminated = False.
requestVector = createRequestVector().
while not T'erminated do
checkForRequests() and satisfy. {Checks for work re-
quests from peers}
if |S| == 0 then
send WorkRequest(). { Sends work request to the next
peer from the request vector}
else
process(.S.dequeue()).
end if
if |S| == 0 then
checkForTermination(). { Checks for termination con-
ditions}
end if
end while

27

D. H-DRQS: Hybrid Distributed
Random Queue Splitting Algorithm

* Our hybrid approach is able to leverage parallelism with only
one MPI process per compute node.
— We achieve this by utilizing light-weight processes (LWP)
— Each compute node spawn an arbitary number of LWPs(threads)

— Only original master thread is allowed to participate in MPI
communication.

— All threads in compute node share work queue in this node

 We prevent race conditions

— Ensure that the enqueue/dequeue operations are guarded by
using a mutual exclusion lock (mutex).

— Ensure that the queue is not modified by any threads during a
gueue split by using counting semaphores.

Algorithm 4

Algorithm 4 Hybrid Distributed Random Queue Splitting (H-
DRQS)

* All LWPs share one logical
address space

* The cost for exchanging
data/messages between
threads is minimal

[a—

AR O T ol

0 %

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:

S = root for the Rank 0 process, and S = () for processes

of higher rank.

Terminated = False.

thread_guard = semaphore_init(threads).

master_guard = semaphore_init(master).

startThreads().

while not Terminated do
checkForRequests() and satisfy. {Checks for work re-
quests from peers}

if |S| == 0 then
sendWorkRequest(). {Sends work request to random
peer}

else

count = min(threads.count(),queue.count()).
semaphore_increment(thread_guard,count).
{Threads process work queue elements}
semaphore_decrement(master_guard,count).

end if

if |S| == 0 then
checkForTermination(). { Checks for termination con-
ditions}

end if

end while

6.Experimentation and empirical results

* Experiment enviroment

— File system : Panasas file system
1. A 6.5 million files, of size 471 TB
2. A 12 million files, of size 2 PB
3. A 100 million files, of size 7 PB

— Machine : Cielo
* 8944 compute nodes and 16 cores per compute node

e Network : torus

Centralized Parallel vs. Hybrid Distributed

8000 IIIIIII l T T l T T T I T T l

* The DRQS/DEQS variants
outperformed the existing CP | | | | |

Centralized Parallel —— | |

7000 |

percent g Soof | H.DRGS
£ | P DRas L2
* The H-DRQS algorithm 4000 e DRGS -~]
performs the best among all 3000 - "”e f
: | 008 Bf.b.o 4
the DRQS/DEQS algorithm 2000 | 20.0.-0.08&0:4- il

1000 IIIIIIIIIIIIIIIIII
4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40 42

Processes

(a) Running Time Comparisons

31

Hybrid DRQS Profile

Lstat() and readdir() dominate
the running time of our
algorithm

With increase in the number of
processes the commnication cost
does not increase

Time(s)

4000 F = T T
3500 v
3000
2500
2000
1500
1000

500

User Provided Function
Istat()

readdir()

Communication Overhead
Total

i

TR T

6

10

14

18

22 26 30 34
Processes

38

(b) Component-wise Running Time of H-DRQS

32

Message and Data Transfers (1)

Total Messages Transferred Total Bytes Transferred
16407 L DEQS memm ‘ 1e+12 L DEQS mem
H-DRQS mam H-DRQS mmam
PA-DEQS mwwss | PA-DEQS s :
1e+06 [PA-DRQS ! : : : 1e+11 [PA-DRQS =
CP ssssss ; ; CP moooon oo
100000 | 1 te#10 }

10000 ¢ 1e+09

1000 1e+08

12M Files 100M Files 12M Files 100M Files
(a) Total Number of Messages (b) Total Number of Bytes

Meocca GELg 5\41:] M%%W«BXI?&- Hﬁnﬁﬁ?ﬁﬁqrmatmi%pm s

Sending Rank

Fig. 1.

Message and Data Transfers (2)

Transfer Totals (B)

30
25
20
15
10

5

0 _—
0 5 10 15 20 25 30
Receiving Rank

Centralized Parallel Tree Walk: Communication Cost

Sending Rank
N W s G N

-

1.6e+09
1.4e+09
1.2e+09
1e+09
8e+08
6e+08
4e+08
2e+08
0

Transfer Totals (B) Transfer Totals (B)
, L
x 2e+08 =
. :
’ 15e408 E °
- £ 4
£
B 1e+08 T 3
& 2|80
. - - |
0
0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Receiving Rank Receiving Rank

(a) DRQS Heatmap (b) PA-DRQS Heatmap

Transfer Totals (B)

Sending Rank

0 1 2 3 4 5 6 7

Receiving Rank
(C) H-DRQS Heatmap

Fig. 5. Heat Maps Showing Message Exchanges

6e+07

5e+07

4e+07

3e+07

2e+07

1e+07

34

Work Distribution

nr T DRQS
12
10 +
10 4
3|
3ol g °
=
3 7t §' 6
g g
£ w 1
g of 4
5 | % 2 -
4 F 0 Al T T
i . 28 462 644 826 1008 119
Hybrid DRQS DRQS Percent of Work Performed
(a) DRQS Work Distribution (b) DRQS Work Distribution
DEQS H-DRQS
14 7
12 4 6 1
10 51
> >
2 2
g 81 & 41
3 3
g 6 g 31
w w
4 2
2 4 1
0 T T 0 T T T T ' :
4 4.5 5 5.5 6 6.5 4 4.4 4.8 5.2 5.6 6
Percent of Work Performed Percent of Work Performed
(C) DEQS Work Distribution (d) H-DRQS Work Distribution

Fig. 6. Load Balancing: H-DRQS and PA-DRQS perform much better load-
balancing than standard DRQS/DEQS.

35

7.Conclusion

* We propose a novel framework and three
novel parallel algorithms

— Facilitate distributed file system operations with
low message complexity

— Balance file system work loads uniformly in real-
world experiments and with low communication
cost without global process synchronization

Comment

Strong point * Weak point
— Experiment environment — Don’t compare empirical
is suitable result of existing
* Supercomputer in LANL algorithm

— How to improve the
algorithm is systematic

Thank you

