
HIGH PERFORMANCE
COMPUTING

PAPER REVIEW
12M56106

Naoki Yatsu

2013 IEEE International Congress on Big Data

Milieu: Lightweight and Configurable
Big Data Provenance for Science

Review Paper

You-Wei Cheah, Beth Plale
School of Informatics and Computing Indiana University, Bloomington, IN

Richard Canon, Lavanya Ramakrishnan
Lawrence Berkeley National Laboratory, Berkeley, CA

Contents

I. INTRODUCTION

II. OVERVIEW

III. MILIEU

IV. IMPLEMENTATION

V. EXPERIMENTS

VI. DISCUSSION

VII.RELATED WORK

VIII.CONCLUSION

Contents

I. INTRODUCTION

II. OVERVIEW

III. MILIEU

IV. IMPLEMENTATION

V. EXPERIMENTS

VI. DISCUSSION

VII.RELATED WORK

VIII.CONCLUSION

INTRODUCTION
• The volume and complexity of data produced and analyzed
in scientific collaborations is growing exponentially. It is
important to track scientific data-intensive analysis
workflows to provide context and reproducibility as data is
transformed in these collaborations.

• Provenance has traditionally been collected at the workflow
level often making it hard to capture relevant information
about resource characteristics and is difficult for users to
easily incorporate in existing workflows.

• Milieu, a framework focused on the collection of
provenance for scientific experiments in High Performance
Computing systems.

Scientific Workflow

S. B. Davidson and J. Freire. Provenance and Scientific Workflows: Challenges and Opportunities. (2008)

One of Open Problem -

Information management infrastructure.

With the growing volume of raw data,

workflows and provenance information,

there is a need for efficient and effective

techniques to manage

these data.

Contributions of this Paper

• We present an architecture and implementation of Milieu:
a provenance collection and storage framework for scientific
applications running on HPC systems.

• We evaluate Milieu on two large systems at the National Energy
Research Scientific Computing Center (NERSC) including a
petascale system and show that the provenance overhead is minimal
and within the normal variation experienced by the applications on the
systems.

• We present and evaluate our query interface for provenance
collection and provide a framework for provenance analysis support.

Contents

I. INTRODUCTION

II. OVERVIEW

III. MILIEU

IV. IMPLEMENTATION

V. EXPERIMENTS

VI. DISCUSSION

VII.RELATED WORK

VIII.CONCLUSION

Tiered Provenance System

Milieu is the first tier where provenance data

is collected in unstructured or semi-structured

format.

Design Goals

•Support for various provenance data models

•Low overhead

•Semi-transparent collection

•Support user annotations

•Staged provenance levels

•Scalability

Contents

I. INTRODUCTION

II. OVERVIEW

III. MILIEU

IV. IMPLEMENTATION

V. EXPERIMENTS

VI. DISCUSSION

VII.RELATED WORK

VIII.CONCLUSION

Architecture of Provenance Framework

A. Collection

• The provenance capture of a user session is collected in its entirety by our
framework. For the provenance collection, we devised three levels of
provenance capture:

• Level 1 - Basic Provenance.
• Includes information about the script, the outputs of the job run, basic environment

about where the job was submitted and user annotations.

• Essentially provenance that a scientific user would be interested in

• Level 2 - Level 1 and more detailed resource information for the
computation.
• More of interests to system administrators and/or for detailed analysis of resource

usage for a particular class of problems.

• Level 3 - Level 2 with the addition of provenance in the form of detailed
traces of I/O calls for commands in the job script
• To be used rarely to collect detailed I/O information for data sets and/or debugging.

B. Storage

• The captured provenance is diverse and varied. Thus, the data store must
be capable of supporting the storage of semistructured provenance
documents. In our current implementation, we use MongoDB, a NoSQL data
store for our storage needs.

• MongoDB is a scalable, high-performance data store that is open-source
and developed in C++.

• In our system, captured provenance is grouped around job IDs (unique
identifiers assigned by the batch queue system) or file identifiers (location
based).

What is MongoDB
MongoDB (from "humongous") is an open-source document database, and the leading NoSQL

database. Written in C++, MongoDB features:

- Document-Oriented Storage

- Replication & High Availability

- Querying

- Map/Reduce

- GridFS

…

http://www.mongodb.org/ - MongoDB-data-models-guide

Contents

I. INTRODUCTION

II. OVERVIEW

III. MILIEU

IV. IMPLEMENTATION

V. EXPERIMENTS

VI. DISCUSSION

VII.RELATED WORK

VIII.CONCLUSION

A. Collection

• The Milieu collection module is available to the user
by loading the module for provenance.

• In order to specify the calls that the user wants to
strace, the tag record trace provenance has to be
added in front of the intended call. Additional user
provenance can also be captured in the form of name
value pairs by adding a line record provenance name
value in the users job scripts, as shown in the listing.

• When a user is done with their session, the captured
provenance is stored in a file, which is then put into
storage on our provenance Mongo database
(MongoDB).

• We implemented our collection tools using a mixture
of Python and Shell scripts. In all cases, the Shell
scripts were used to interact at the front end, since
this is native in a HPC environment.

B. Storage

• We group all provenance documents under a single provenance collection.
For a single job ID, multiple provenance documents may exist in MongoDB.

• Mandatory fields (“columns” in the traditional sense) for each document
include an associated job ID, user ID and timestamp.

• The provenance store also has information about the systems. The system
information is more structured and will contain more fields, such as the host
name, IP address, user environment variables, etc.

• For file management, we use the MongoDB GridFS specification for storing
the actual file contents due to its ease of use, metadata and large file
support.

C. Query and Access

• Milieu provides two query interfaces a) command-line and, b) web interface,
that allows the user to query and make simple edits to the MongoDB
provenance storage.

Contents

I. INTRODUCTION

II. OVERVIEW

III. MILIEU

IV. IMPLEMENTATION

V. EXPERIMENTS

VI. DISCUSSION

VII.RELATED WORK

VIII.CONCLUSION

A. Testbed Setup

• 3 applications from the NERSC-6 application benchmark suite.

• A range of problem sizes and core counts were used to capture mid-range
to largescale codes.

• Our experiments were evaluated on two NERSC systems, namely Carver
and Hopper, a petascale system.

Carver: IBM iDataPlex system with 1202 compute nodes.

Node - 2 two-core Westmere 2.67GHz processors with 48GB of memory

4 eight-core Nehalem-EX 2.00GHz processors with 1TB of memory

All nodes are connected using 4X QDR InfiniBand technology.

Hopper: Cray XE6 peta-flop system consisting of 6384 nodes.

Node - 2 twelve-core AMD ‘Magny-Cours 2.1GHz processors with 64GB of memory.

The compute nodes are connected via a custom high-bandwidth,

low latency network provided by Cray in a 3D torus topology.

NERSC-6 application benchmark

Workload

• GTC short for 3D Gyrokinetic Toroidal Code, is a 3-dimensional particle-in-cell (PIC)
code used to study microturbulence in magnetically confined toroidal fusion plasmas.
We used version 2 of the GTC code with a large problem size that involves
66,455,552 number of grid points as input on Hopper and 2 million grid points on
Carver.

• MILC or MIMD Lattice Computation is used in part to study quantum
chromodynamics (QCD), the theory of the subatomic “strong” interactions
responsible for binding quarks into protons and neutrons and holding them together
in the nucleus. We used version 7 of the MILC code in our experiments using the
extra large input lattice size of 64x64x64x144 on Hopper. A smaller version using a
lattice size of 32x32x16x18 with 2 quark flavors, four trajectories and eight steps per
trajectory was used on Carver for our evaluation.

• The PARAllel Total Energy Code (PARATEC) benchmark code performs ab-initio
quantum-mechanical total energy calculations using pseudopotentials, a plane wave
basis set and uses an all-band (unconstrained) conjugate gradient (CG) approach
for solving Density Functional Theory’s (DFT) Kohn- Sham equations. The version
we used is based off the NERSC- 6 input that contains 6 conjugate gradient
iterations and only 250 atoms in a diamond lattice configuration. This input does not
allow any aggregate over the transposed data.

Conditions

• The applications were executed on Carver using 8 nodes with 8 processes
per node. On Hopper, GTC was executed using 2048 cores and MILC was
executed using 4096 cores.

• We conducted our experiments by comparing the different levels of
provenance capture along with the base case of just running the application
without any provenance capture.

• For each application, we perform 15 measurements without any provenance
capture and also 15 measurements for each level of provenance capture
(levels 1–3). We only performed 7 Hopper measurements for each scenario
since jobs are more expensive than their Carver counterparts both resource-
wise and timewise.

• All results were generated from job runs during normal production time on
the NERSC machines discussed above.

B. Evaluation of Provenance Collection

• Evaluation of three applications on two of NERSC HPC systems:
Hopper and Carver

Carver

• The overhead associated with GTC, MILC and PARATEC to be insignificant
compared to the base case with no provenance capture.

• Overhead is within the normal variability (well within 2%) that these
application already experience on these systems.

Hopper

• For GTC (Figure 4a), we note that the provenance capture accounts for
about 22–28 seconds (overhead of slightly over 2%). Figure 4b shows the
performance of MILC on Hopper with different provenance levels. The same
trend occurs for MILC on Hopper with an overhead of about 46–104
seconds (2–5% overhead).

Analysis of Overhead

• From the results of both tables, we observe that our provenance module contributes
very little to the overhead of the end-to-end execution of these applications.

• The Hopper overhead is a little higher than Carver since Carver is more directly
connected to the file system server than Hopper.

C. Evaluation of Provenance Query

• Evaluate the performance of querying the stored provenance through a few
queries.
• Regular Expression

• Limited set queries

• Exact indexed queries

Regular Expression

• Query for a regular expression job ID query by
iterating through all available documents in
MongoDB and returning all documents

• Query performance generally increases linearly
as the number of documents that are being stored
in the database increases.

• If there are queries that need to query all data in a
database, they will benefit from a MapReduce
framework that will allow scalability.

Limited set queries

• Regular expression query of a single job ID for a
MongoDB database of different sizes.

• The outliers in this figure are the first queries
issued against MongoDB.

• These first queries are retrieved and cached in
memory, resulting in subsequent identical queries
having less significant response times,
approximately half the response times of the first
queries.

Exact indexed queries

• The performance of the query is very fast with response times within
600–800 microseconds even for a large database with 24 million
documents.

Contents

I. INTRODUCTION

II. OVERVIEW

III. MILIEU

IV. IMPLEMENTATION

V. EXPERIMENTS

VI. DISCUSSION

VII.RELATED WORK

VIII.CONCLUSION

Uses of Provenance

• Data Management
The captured provenance helps the user identify with ease where data
objects are stored. Users can use Milieu to query the NoSQL data store
using regular expressions to search previous job runs for a variety of
information including data objects, status, etc.

• Faults
The provenance can be used to determine if the job script terminated
properly.

Flexibility

• Milieu provides support for multiple levels of provenance. This allows the
scientist or system administrator to pick the level that is most suitable for
their use case.

• The support for user annotations allows users to capture notes and
metadata that are often lost. It should be noted that Milieu does not require
users to make any changes to their job scripts.

• The support for user annotations allows users to capture notes and
metadata that are often lost but is not required to collect other provenance
information. Provenance initiation is user controlled but instrumentation is
automated.

Operational considerations

• In our current implementation, all users are stored in a single collection. This
optimizes the queries by system administrators performed across users.

• In future work, we plan to provide a start-time configuration to control per
user collection if it is required in cases where the usage model might differ.

• Additionally, we operate MongoDB in a single-server mode. MongoDB
allows sharding that allows us to easily scale up as data grows. MongoDB
sharding is well-documented and evaluated and can be easily configured for
MongoDB.

Scalable Storage

• The “big data” movement has seen a number of NoSQL data stores for
horizontal scalability distributed over many servers. In this paper, we used
Mongo database (MongoDB), a document-oriented data store, since it was
well suited for semi-structured provenance documents.

• MongoDB is typically well suited for write-once, read-many times pattern
data access, as is the case with Milieu. The NoSQL systems are evolving
rapidly and it is possible that some other data store might provide additional
features and/or better performance. Our architecture and methodology is not
tied to the use of MongoDB and thus it will be possible to use other data
stores with Milieu in the future.

Contents

I. INTRODUCTION

II. OVERVIEW

III. MILIEU

IV. IMPLEMENTATION

V. EXPERIMENTS

VI. DISCUSSION

VII.RELATED WORK

VIII.CONCLUSION

CONCLUSION

• In this paper, we present the design, implementation and evaluation of
Milieu, a minimally-intrusive, light-weight, multi-level provenance collection,
storage and query framework. Milieu supports the collection of semi-
structured provenance data from jobs and user commands on HPC systems.

• Our evaluation on NERSC production systems, including a petascale
machine shows that the collection overhead is minimal.

• Milieu makes it possible to build a multi-tiered provenance architecture
where storage for collection and storage for optimized queries can be
separated. A multi-tiered architecture will be able to support a wider range of
provenance queries and analyses that is difficult if not impossible today.

Impression

• This framework is interesting with the point that user can
easily store provenance with a little overhead.

• It is needed to compare other framework to store
provenance and data properties.

