HIGH PERFORMANCE
COMPUTING
PAPER REVIEW

12M56106
Naoki Yatsu

Review Paper

2013 IEEE International Congress on Big Data

Milieu: Lightweight and Configurable
Big Data Provenance for Science

You-Wel Cheah, Beth Plale

School of Informatics and Computing Indiana University, Bloomington, IN

Richard Canon, Lavanya Ramakrishnan
Lawrence Berkeley National Laboratory, Berkeley, CA

Contents

. INTRODUCTION

. OVERVIEW

. MILIEU

Iv. IMPLEMENTATION
V. EXPERIMENTS
VI. DISCUSSION
VII.RELATED WORK
VILCONCLUSION

Contents

. INTRODUCTION
.

.

V.

V.

VI,

VII.

VIIL.

INTRODUCTION

« The volume and complexity of data produced and analyzed
In scientific collaborations is growing exponentially. It is
Important to track scientific data-intensive analysis
workflows to provide context and reproducibility as data Is
transformed in these collaborations.

« Provenance has traditionally been collected at the workflow
level often making it hard to capture relevant information
about resource characteristics and s difficult for users to
easlily incorporate in existing workflows.

 Milieu, a framework focused on the collection of
provenance for scientific experiments in High Performance
Computing systems.

Scientific Workflow

F Wik
vikSerucruredPointsReader head.128.vt Workflow: Genarates
mput: datahead 120k | visualization of bead from |

Oufput; preades L visile human peoject
Stare 20050819 1320245 |
ind 200508-191X0%22 |
User; jubana |

| Execution 143: Unable
10 find input file

s e

Mot prescer

Qurpur: plot ulale 3 LURTEwR]E
Storr 2006-08-19 13:04:25 | ﬂ E W
Enct 2005-08-19 130512 | n 2
User: jukana ;
iduenisjuew]s
'1

pope hegd-hist. png ke

SMEEEET

showing bone

S. B. Davidson and J. Freire. Provenance and Scientific Workflows: Challenges and Opportunities. (2008)

One of Open Problem -
Information management infrastructure.

With the growing volume of raw data,
workflows and provenance information,
there is a need for efficient and effective
techniques to manage

these data.

Contributions of this Paper

« We present an architecture and implementation of Milieu:
a provenance collection and storage framework for scientific

applications running on HPC systems.

- We evaluate Milieu on two large systems at the National Energy
Research Scientific Computing Center (NERSC) including a
petascale system and show that the provenance overhead is minimal
and within the normal variation experienced by the applications on the

systems.

« We present and evaluate our query interface for provenance
collection and provide a framework for provenance analysis support.

Contents

.

. OVERVIEW
1.

V.

V.

VI.

VII.

VIII.

Tiered Provenance System

Milieu is the first tier where provenance data

MILIEU is collected in unstructured or semi-structured
Provenance Collection format.
T | oo _

i : Data Model Conversion

W | . :

; W

i

i Graph Relational File

i Database Database System

|

! Fig. 1: Overview of Provenance Collection and Analysis Framework.
i £ Milieu is the first tier where provenance data is collected in unstruc-
i wuery Map Reduce tured or semi-struc_‘tured format. The second tier_is more focused on
! provenance analysis and appropriate storage options might be used.
! Analysis This architecture allows us to provide the best optimized storage

|
| Provenance Anakyss Framewark model for collection and specific analysis types.

Design Goals

« Support for various provenance data models
«Low overhead

« Semi-transparent collection

e SUpport user annotations

« Staged provenance levels

« Scalability

.
I

. MILIEU
V.

V.

VI,

VII.

VIII.

Contents

Architecture of Provenance Framework

iOn Job Exeaution
Batch Queuse '
" Prowenance
lohb Store
Sulbsmission
§ |—
i Instrumented U
. lob Scripts Jab Scripts
5 Comm:and Line
J Query Interfao
F o " Frove mance Module Wieh Query
A i Imberfaoe

= B
"-._% o Capture User
© =7 Speminn Prowe nance

Fig. 2: Architecture of provenance framework. The activation of the
collection mechanism triggers user session provenance and prove-
nance from job script executions to be captured, which is stored in a
MongoDB data store. The stored provenance can be retrieved either
through a command line interface or via a web query interface.

A. Collection

« The provenance capture of a user session is collected in its entirety by our
framework. For the provenance collection, we devised three levels of
provenance capture:

 Level 1 - Basic Provenance.
« Includes information about the script, the outputs of the job run, basic environment
about where the job was submitted and user annotations.

« Essentially provenance that a scientific user would be interested in

« Level 2 - Level 1 and more detailed resource information for the
computation.

« More of interests to system administrators and/or for detailed analysis of resource
usage for a particular class of problems.

 Level 3 - Level 2 with the addition of provenance in the form of detailed
traces of I/O calls for commands in the job script
 To be used rarely to collect detailed 1/0 information for data sets and/or debugging.

B. Storage

« The captured provenance is diverse and varied. Thus, the data store must
be capable of supporting the storage of semistructured provenance
documents. In our current implementation, we use MongoDB, a NoSQL data
store for our storage needs.

« MongoDB is a scalable, high-performance data store that is open-source
and developed in C++.

« In our system, captured provenance is grouped around job IDs (unique
identifiers assigned by the batch queue system) or file identifiers (location
based).

What is MongoDB

MongoDB (from "humongous") is an open-source document database, and the leading NoSQL

database. Written in C++, MongoDB features:
- Document-Oriented Storage
- Replication & High Availability

- Querying
- Map/Reduce
- GridFS

{
_1d: <ObjectIdl>,
username: "123xyz",
contact: {
phone: "123-456-7890",
email: "xyz@example.com” ;

1
S

access: {
level: 5,

group: "dev”

3

Figure 3: Data model with embedded fields that contain all related information.

Books

Programming

Languages

Databases

MongoDB

dbm

http://www.mongodb.org/ - MongoDB-data-models-guide

Contents

.

1.

1.

Iv. IMPLEMENTATION
V.

VI.

VII.

VIII.

A. Collection

- The Milieu collection module is available to the user
by loading the module for provenance.

- In order to specify the calls that the user wants to
strace, the tag record trace provenance has to be
added in front of the intended call. Additional user
provenance can also be captured in the form of name
value pairs by adding a line record provenance name
value In the users job scripts, as shown in the listing.

« When a user is done with their session, the captured
provenance is stored in a file, which is then put into
storage on our provenance Mongo database
(MongoDB).

« We implemented our collection tools using a mixture
of Python and Shell scripts. In all cases, the Shell
scripts were used to interact at the front end, since
this is native in a HPC environment.

$#! /bin/csh
$PBS -3 oe
#PBS —g regular

#FBS -N GTCcleoud

#PBS -1 walltime=00:20:00

$PB5 -1 nodes=8:ppn=8

#PBS -5 /bin/csh

module load python

python SUSER/provenance {/source /{python_scripts/

timestamp.py SUSER/provenance/source/f
python_scripts/dbcoenfig.py run.pbs 'begin
script’ yocheah SPBS_JOBID

gstat -f S$PBS_JOBID > SUSER/GSCRATCH/GIC/gstat
.SPBS_JOBID

set verbose
cd $PES_O _WORKDIR
cp ./gtc.input.&4MPItasks.cloud gte.input

strace -tt -o $USER/GSCRATCH/GTC/strace.out
.1.31543.20120927185010 mpirun -n 64 ./
gtcmpi

rm gtc.input

cp $PBS_JOBID.OU ‘pwd’ foutput
.31543.20120927185010

echo *‘$USER/provenancefscurce/binf
gsub_file_ insert hopperl? yocheah
$PBS_JOBID 3 SUSER/provenance/source/
python_scripts/file insert.py SUSER/
provenance /source/python_scripts/dboconfig.
py SUSER/GSCRATCH/GIC/gstat.$PB5S_JOBID
SUSER/GSCBATCH/GTC/strace.out
.0.31543.20120927185010 $USER/GSCRATCH/GIC
f/strace.out.1.31543.20120927185010 SUSER/
GSCRATCH/GTC/strace.out
.2.31543.20120927185010 SUSER/GSCRATCH/GIC
foutput.31543.20120927185010"

python SUSER/provenance f/source /python_scripts/
timestamp.py $USER/provenance/source/
python_scripts/dbcenfig.py run.pbs ‘end
script’ yocheah S$PBS_JOBID

Listing 1: Example of an instrumented PRS script. Highlighted texts
are instrumentation added or modified by the provenance framework
Or USer.

B. Storage

« We group all provenance documents under a single provenance collection.
For a single job ID, multiple provenance documents may exist in MongoDB.

« Mandatory fields (“columns” in the traditional sense) for each document
Include an associated job ID, user ID and timestamp.

« The provenance store also has information about the systems. The system
Information 1s more structured and will contain more fields, such as the host
name, IP address, user environment variables, etc.

- For file management, we use the MongoDB GridFS specification for storing
the actual file contents due to its ease of use, metadata and large file
support.

C. Query and Access

 Milieu provides two query interfaces a) command-line and, b) web interface,
that allows the user to query and make simple edits to the MongoDB
provenance storage.

[Provenance Query3] jobid . (field,walltime) |
value,00:10:00)

Listing 3: Example of a query to return all job [Ds that have walltime
00:10:00 in the command line.

[Provenance QueryS$] file MILC

Listing 4: Example of a query to return all filenames that contain
MILC.

Contents

.

1.

1.

V.

V. EXPERIMENTS
VI.

VII.

VIII.

A. Testbed Setup

« 3 applications from the NERSC-6 application benchmark suite.

« Arange of problem sizes and core counts were used to capture mid-range
to largescale codes.

« Our experiments were evaluated on two NERSC systems, namely Carver
and Hopper, a petascale system.

Carver. IBM iDataPlex system with 1202 compute nodes.
Node - 2 two-core Westmere 2.67GHz processors with 48GB of memory
4 eight-core Nehalem-EX 2.00GHz processors with 1TB of memory
All nodes are connected using 4X QDR InfiniBand technology.

Hopper: Cray XEG6 peta-flop system consisting of 6384 nodes.
Node - 2 twelve-core AMD ‘Magny-Cours 2.1GHz processors with 64GB of memory.
The compute nodes are connected via a custom high-bandwidth,
low latency network provided by Cray in a 3D torus topology.

NERSC-6 application benchmark

Benchmark | Science Area Algorithm Space Base Case Problem Lang Libraries
Concurrency Description
CAM Climate (BER) Mavier Stokes CFD 56, 240 D Grid, {~0.5 deg FS0 netCOF
Strong scaling resolution); 240
timesteps
GAMESS Quantum Chem Dense linear 256, 1024 (Same rms gradient, MP2 F77 DDI, BLAS
(BES) algebra, DFT as TI-09) gradient
GTC Fusion (FES) PIC, finite 512, 2048 100 particles per FS0
difference Weak scaling cell
IMPACT-T Accelerator Largely FIC, FFT 256,1024 50 particles per cell FS0
Physics {HEF) component Strong scaling [currently)
MAESTRO Astrophysics Low Mach Hydro; 512, 2048 64 x 64 x 128 gridpts | F90 Boxlib
(HEP) block structured- Wesak scaling per proc; 10
grid multiphysics timesteps
MILC Lattice Gauge Conjugate 256, 1024, 8152 Ex8x8x9Local C,
Physics (NP) gradient, sparse Weak scaling Grid, ~70,000 iters assem.
matrix; FFT
PARATEC Material Science DFT; FFT, BLAS3 256, 1024 686 Atoms, 1372 F30 Scalapack
(BES) Strong scaling bands, 20 iters

Table 6: Final Benchmark Selection Matrix together with problem sizes and concurrencies.

Workload

« GTC short for 3D Gyrokinetic Toroidal Code, is a 3-dimensional particle-in-cell (PIC)
code used to study microturbulence in magnetically confined toroidal fusion plasmas.
We used version 2 of the GTC code with a large problem size that involves
86,455,552 number of grid points as input on Hopper and 2 million grid points on

arver.

« MILC or MIMD Lattice Computation is used in part to study quantum
chromodynamics (QCD), the theory of the subatomic “strong” interactions
responsible for binding quarks into protons and neutrons and holding them together
In the nucleus. We used version 7 of the MILC code in our experiments using the
extra large input lattice size of 64x64x64x144 on Hopper. A smaller version using a
lattice size of 32x32x16x18 with 2 quark flavors, four trajectories and eight steps per
trajectory was used on Carver for our evaluation.

« The PARAIllel Total Energy Code (PARATEC) benchmark code performs ab-initio
guantum-mechanical total energy calculations using pseudopotentials, a plane wave
basis set and uses an all-band unconstramedkconjugate gradient (CG) approach
for solving Density Functional Theory’s (DFT) Kohn- Sham equations. The version
we used IS based off the NERSC- 6 Input that contains 6 conjugate gradient
iterations and only 250 atoms in a diamond lattice configuration. This input does not
allow any aggregate over the transposed data.

Conditions

« The applications were executed on Carver using 8 nodes with 8 processes
per node. On Hopper, GTC was executed using 2048 cores and MILC was
executed using 4096 cores.

« We conducted our experiments by comparing the different levels of
provenance capture along with the base case of just running the application
without any provenance capture.

« For each application, we perform 15 measurements without any provenance
capture and also 15 measurements for each level of provenance capture
(levels 1-3). We only performed 7 Hopper measurements for each scenario
since jobs are more expensive than their Carver counterparts both resource-
wise and timewise.

« All results were generated from job runs during normal production time on
the NERSC machines discussed above.

B. Evaluation of Provenance Collection

« Evaluation of three applications on two of NERSC HPC systems:
Hopper and Carver

Carver

&# o
-~ =
(3]
— 8
_ ! i
E i —_ ! | |
& | I ! 3 ? —] g !
i = i H =g |
B m— a I g & ! N
4 g 8 | i 8 I
- —— . —_— !
5 5w ! 50 | i
E £ L — 1 |E
un 1 | E -
m 1 | —_— e 1
- | I o 1
! ! T ; - . i !
i i i
| 1 | o i I 1
il — I
L —_ . —_ —_
T T T T E T T T T i T T T T
Monae Laval 1 Lavel 2 Liowal 3 Nz Lol 1 Lawvel 2 Levsd 3 Mo Lol 4 Liowal 2 Lowed 3
Laval of Provorance Coplura Loval of Provonance Caphura Laval of Provanance Capturn
ia) GTC-Carver (b} MILC-Carver ic) PARATEC-Carver

Fig. 3: Timings for base run and 3 different levels of provenance capture on Carver. Provenance capture does not yield significant overhead.

« The overhead associated with GTC, MILC and PARATEC to be insignificant
compared to the base case with no provenance capture.

« Overhead is within the normal variability (well within 2%) that these
application already experience on these systems.

Hopper

Fig. 4: Timings for base run and 3 different levels of provenance
—_ capture on Hopper. Provenance capture shows a slight overhead (2-

ﬁ T E 4 T | 3%) compared with the base case. Median timings for level 3 are
- i o i I lower than level 1 and 2 but have more spread.
I
I
i 5
= & 5 ™ —
c —_— [=
= L = -
8 — 881
5 8 5% | . .
2 —_— [| i 1
E 2 | | |
= —T— | = g 4 | i !
ﬁ i i i i i
= I I | [
! : |
! 2 1
i 2 - |
g
Mona T Lawal 2 Laval 3 Mona T Lawal 2 Lovel 3
Lavel of Proveranca Caplure Laval of Proverance Coplurs
la) GTC-Hopper (b} MILC-Hopper

« For GTC (Figure 4a), we note that the provenance capture accounts for
about 22—-28 seconds (overhead of slightly over 2%). Figure 4b shows the
performance of MILC on Hopper with different provenance levels. The same
trend occurs for MILC on Hopper with an overhead of about 46-104
seconds (2-5% overhead).

Analysis of Overhead

TABLE I: Duration taken for individual scripts for provenance
capture of a GTC job on Hopper (level 2) and Carver (level 3).

Seript Name Duration is)
Hopper Carver
gsub-proy 6.05 3.00
— gsub_pc.py! (0.08) (0.07)
timestamp.py (begin) 0.25 0.05
gsub_file_insert 1.77 0.30
— file_insert. py* (0.43) (0.03)
timestamp.py (end) 0.16 0.11

-2 Duration of gsub_prov.py and file_insert py accounted within gsub-
prov and gsub_file_insert respectively.

« From the results of both tables, we observe that our provenance module contributes

very little to the overhead of the end-to-end execution of these applications.

« The Hopper overhead is a little higher than Carver since Carver is more directly
connected to the file system server than Hopper.

C. Evaluation of Provenance Query

« Evaluate the performance of querying the stored provenance through a few
gueries.
« Regular Expression

« Limited set queries
« Exact indexed queries

Regular Expression

« Query for a regular expression job ID query by
iterating through all available documents in
MongoDB and returning all documents

400 S0 BOD
1

« Query performance generally increases linearly
as the number of documents that are being stored
In the database increases.

Dumicin (=

200 o

o If there are queries that need to query all data in a
database, they will benefit from a MapReduce
framework that will allow scalability.

100
1

a}] 10] 20 25
Mumber ol MongoDB documents |milions)

Fig. 5: Plot of query duration vs number of MongoDB documents
returned. The return time for each query is generally linear with the
number of results returned.

Limited set queries

« Regular expression query of a single job ID for a g
MongoDB database of different sizes.

. The outliers in this figure are the first queries .
Issued against MongoDB. _g.

- These first queries are retrieved and cached in :
memory, resulting in subsequent identical queries = #1
having less significant response times, i =
approximately half the response times of the first] = _-
gueries. ; =

T T T T T T T T T T
i &30 A 22 23 24 £ 2 T I8

Mumbar of dooumanis in MongolE (mibons)

Fig. 6: Plot of query duration for a regular expression query of a
single job ID vs number of MongoDB documents. Outliers reflect
the timings of the first query issued. The query performance here is
linear and the result size returned for each query is 16 documents.

Exact indexed queries

« The performance of the query is very fast with response times within
600-800 microseconds even for a large database with 24 million
documents.

.
I

.

V.

V.

VI. DISCUSSION
VII.

VIII.

Contents

Uses of Provenance

- Data Management
The captured provenance helps the user identify with ease where data
objects are stored. Users can use Milieu to query the NoSQL data store

using regular expressions to search previous job runs for a variety of
Information including data objects, status, etc.

« Faults

The provenance can be used to determine if the job script terminated
properly.

Flexibility

« Milieu provides support for multiple levels of provenance. This allows the
scientist or system administrator to pick the level that is most suitable for
their use case.

« The support for user annotations allows users to capture notes and
metadata that are often lost. It should be noted that Milieu does not require
users to make any changes to their job scripts.

« The support for user annotations allows users to capture notes and
metadata that are often lost but is not required to collect other provenance

Information. Provenance initiation is user controlled but instrumentation is
automated.

Operational considerations

« In our current implementation, all users are stored in a single collection. This
optimizes the queries by system administrators performed across users.

- In future work, we plan to provide a start-time configuration to control per
user collection if it is required in cases where the usage model might differ.

« Additionally, we operate MongoDB in a single-server mode. MongoDB
allows sharding that allows us to easily scale up as data grows. MongoDB
sharding is well-documented and evaluated and can be easily configured for

MongoDB.

Scalable Storage

« The “big data” movement has seen a number of NoSQL data stores for
horizontal scalability distributed over many servers. In this paper, we used
Mongo database (MongoDB), a document-oriented data store, since it was
well suited for semi-structured provenance documents.

« MongoDB is typically well suited for write-once, read-many times pattern
data access, as is the case with Milieu. The NoSQL systems are evolving
rapidly and it is possible that some other data store might provide additional
features and/or better performance. Our architecture and methodology is not
tied to the use of MongoDB and thus it will be possible to use other data
stores with Milieu in the future.

Contents

.
I

.

V.

V.

VI.

VII.
VILCONCLUSION

CONCLUSION

« In this paper, we present the design, implementation and evaluation of
Milieu, a minimally-intrusive, light-weight, multi-level provenance collection,
storage and query framework. Milieu supports the collection of semi-
structured provenance data from jobs and user commands on HPC systems.

« Our evaluation on NERSC production systems, including a petascale
machine shows that the collection overhead is minimal.

« Milieu makes it possible to build a multi-tiered provenance architecture
where storage for collection and storage for optimized queries can be
separated. A multi-tiered architecture will be able to support a wider range of
provenance gueries and analyses that is difficult if not impossible today.

Impression

 This framework is interesting with the point that user can
easily store provenance with a little overhead.

e It Is needed to compare other framework to store
provenance and data properties.

