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1.	
  Introduc2on	


•  To	
  make	
  bejer	
  use	
  of	
  graph	
  data	
  and	
  mining	
  
algorithms,	
  many	
  plakorms	
  are	
  proposed.	
  
– Pregel	
  
– HADI	
  
– PEGASUS	
  
– X-­‐RIME	
  

•  This	
  paper	
  focused	
  on	
  Pregel.	
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About	
  Pregel	


•  Pregel	
  is	
  used	
  for	
  large	
  graph	
  minings	
  
recently.	
  
– Message	
  passing-­‐based	
  
– Performs	
  bejer	
  than	
  MapReduce	
  
– Built	
  on	
  the	
  Bulk	
  Synchronous	
  Parallel	
  (BSP)	
  
model	
  
•  Computa2on	
  is	
  divided	
  into	
  “supersteps”.	
  
•  These	
  supersteps	
  are	
  separated	
  by	
  global	
  barrier.	
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Load	
  balancing	


•  In	
  a	
  Pregel	
  system,	
  balanced	
  computa2on	
  and	
  
communica2on	
  is	
  fundamental.	
  

•  Pregel	
  and	
  other	
  implemented	
  plakorms	
  have	
  
systems	
  to	
  do	
  so.	
  
– Giraph	
  
– GoldenOrb	
  
– Hama	
  
– Surfer	
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Recent	
  Approaches	
  for	
  Balancing	


•  Use	
  hash-­‐	
  /	
  range-­‐based	
  graph	
  par22oning	
  
•  Entrust	
  developers	
  to	
  use	
  their	
  own	
  
par22oning	
  scheme	
  or	
  pre-­‐par22on	
  data	
  

•  Provide	
  sophis2cated	
  techniques	
  
•  U2lize	
  distributed	
  data	
  stores	
  and	
  indexing	
  on	
  
ver2ces	
  and	
  edges	
  

•  Perform	
  coarse-­‐grained	
  load	
  balancing	
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The	
  Efficacy	
  of	
  Recent	
  Methods	


•  Are	
  these	
  method	
  effec2ve	
  for	
  large	
  graph?	
  
– They	
  are	
  sta2c	
  approaches.	
  
– Developers	
  should	
  predict	
  the	
  behavior.	
  
– Developers	
  should	
  know	
  run2me	
  characteris2cs.	
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2.	
  Dynamic	
  Behavior	
  of	
  Algorithms	


•  There	
  are	
  many	
  factors	
  
affect	
  the	
  run2me	
  
performance	
  in	
  Pregel.	
  
– When	
  ver2ces	
  are	
  ac2ve,	
  
they	
  compute,	
  send	
  and	
  
receive	
  messages.	
  

–  Some	
  messages	
  are	
  sent	
  to	
  
another	
  workers	
  (nodes).	
  

•  Some	
  factors	
  can	
  be	
  
masked	
  by	
  overlapping	
  or	
  
running	
  many	
  ver2ces.	
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Figure 1. Factors that can affect the runtime in the Pregel
framework

tioning methods divide a dataset based on a simple heuristic:
to evenly distribute vertices across compute nodes, irrespec-
tive of their edge connectivity. Min-cut based partitioning,
on the other hand, considers vertex connectivity and parti-
tions the data such that it places strongly connected vertices
close to each other (i.e., on the same cluster). The result-
ing performance of these partitioning approaches is, how-
ever, graph dependent. To demonstrate this variability, we
ran a simple—and highly predictable—PageRank algorithm
on different datasets (summarized in Table 1) using the three
popular partitioning methods. Figure 2 shows that none of
the partitioning methods consistently outperforms the rest,
noting that ParMETIS [15] partitioning cannot be performed
on the arabic-2005 graph due to memory limitations.

In addition to the graph structure, the running algorithm
can also affect the workload balance across compute nodes.
Broadly speaking, graph algorithms can be divided into
two categories (based on their communication characteris-
tics across supersteps): stationary and non-stationary.

Stationary Graph Algorithms. An algorithm is stationary
if its active vertices send and receive the same distribution of
messages across supersteps. At the end of a stationary algo-
rithm, all active vertices become inactive (terminate) during
the same superstep. Usually graph algorithms represented by
a matrix-vector multiplication2 are stationary algorithms, in-
cluding PageRank, diameter estimation and finding weakly
connected components.

Non-stationary Graph Algorithms. A graph algorithm is
non-stationary if the destination or size of its outgoing mes-
sages changes across supersteps. Such variations can create
workload imbalances across supersteps. Examples of non-
stationary algorithms include distributed minimal spanning
tree construction (DMST), graph queries, and various simu-
lations on social network graphs (e.g., advertisement propa-
gation).

2 The matrix represents the graph adjacency matrix and the vector represents
the vertices’ value.

Figure 2. The difference in execution time when processing
PageRank on different graphs using hash-based, range-based
and min-cuts partitioning. Because of its size, arabic-2005
cannot be partitioned using min-cuts (ParMETIS) in our
local cluster.

Figure 3. The difference between stationary and non-
stationary graph algorithms with respect to the incoming
messages. Total represents the sum across all workers and
Max represents the maximum amount (on a single worker)
across all workers.

To illustrate the differences between the two classes of
algorithms, we compared the runtime behavior of PageRank
(stationary) against DMST (non-stationary) when process-
ing the same dataset (LiveJournal1) on a cluster of 21 ma-
chines. The input graph was partitioned using a hash func-
tion. Figure 3 shows the variability in the incoming messages
per superstep for all workers. In particular, the variability can
span over five orders of magnitude for non-stationary algo-
rithms.

The remainder of the section describes four popular graph
mining algorithms that we use throughout the paper. They
cover both stationary and non-stationary algorithms.

2.1 Example Algorithms

PageRank. PageRank [24] is a stationary algorithm that
uses matrix-vector multiplications to calculate the eigenval-
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Workload	
  imbalance	


•  It	
  is	
  difficult	
  to	
  achieve	
  a	
  balanced	
  workload	
  for	
  
graph	
  structure	
  and	
  algorithms	
  behavior.	
  

	
  
•  Some	
  nodes	
  may	
  take	
  a	
  long	
  2me	
  to	
  compute	
  
many	
  nodes,	
  send	
  and	
  receive	
  many	
  messages.	
  

	
  
•  As	
  this	
  paper	
  introduced,	
  many	
  approaches	
  are	
  
used	
  in	
  Pregel	
  systems.	
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Evalua2on	
  of	
  recent	
  methods	


•  At	
  first,	
  three	
  common	
  
approaches	
  are	
  
evaluated	
  using	
  these	
  
datasets.	
  
–  Hash-­‐based	
  
–  Range-­‐based	
  
– Minimum-­‐cuts	
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Figure 1. Factors that can affect the runtime in the Pregel
framework

tioning methods divide a dataset based on a simple heuristic:
to evenly distribute vertices across compute nodes, irrespec-
tive of their edge connectivity. Min-cut based partitioning,
on the other hand, considers vertex connectivity and parti-
tions the data such that it places strongly connected vertices
close to each other (i.e., on the same cluster). The result-
ing performance of these partitioning approaches is, how-
ever, graph dependent. To demonstrate this variability, we
ran a simple—and highly predictable—PageRank algorithm
on different datasets (summarized in Table 1) using the three
popular partitioning methods. Figure 2 shows that none of
the partitioning methods consistently outperforms the rest,
noting that ParMETIS [15] partitioning cannot be performed
on the arabic-2005 graph due to memory limitations.

In addition to the graph structure, the running algorithm
can also affect the workload balance across compute nodes.
Broadly speaking, graph algorithms can be divided into
two categories (based on their communication characteris-
tics across supersteps): stationary and non-stationary.

Stationary Graph Algorithms. An algorithm is stationary
if its active vertices send and receive the same distribution of
messages across supersteps. At the end of a stationary algo-
rithm, all active vertices become inactive (terminate) during
the same superstep. Usually graph algorithms represented by
a matrix-vector multiplication2 are stationary algorithms, in-
cluding PageRank, diameter estimation and finding weakly
connected components.

Non-stationary Graph Algorithms. A graph algorithm is
non-stationary if the destination or size of its outgoing mes-
sages changes across supersteps. Such variations can create
workload imbalances across supersteps. Examples of non-
stationary algorithms include distributed minimal spanning
tree construction (DMST), graph queries, and various simu-
lations on social network graphs (e.g., advertisement propa-
gation).

2 The matrix represents the graph adjacency matrix and the vector represents
the vertices’ value.
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Figure 2. The difference in execution time when processing
PageRank on different graphs using hash-based, range-based
and min-cuts partitioning. Because of its size, arabic-2005
cannot be partitioned using min-cuts (ParMETIS) in our
local cluster.

Figure 3. The difference between stationary and non-
stationary graph algorithms with respect to the incoming
messages. Total represents the sum across all workers and
Max represents the maximum amount (on a single worker)
across all workers.

To illustrate the differences between the two classes of
algorithms, we compared the runtime behavior of PageRank
(stationary) against DMST (non-stationary) when process-
ing the same dataset (LiveJournal1) on a cluster of 21 ma-
chines. The input graph was partitioned using a hash func-
tion. Figure 3 shows the variability in the incoming messages
per superstep for all workers. In particular, the variability can
span over five orders of magnitude for non-stationary algo-
rithms.

The remainder of the section describes four popular graph
mining algorithms that we use throughout the paper. They
cover both stationary and non-stationary algorithms.

2.1 Example Algorithms

PageRank. PageRank [24] is a stationary algorithm that
uses matrix-vector multiplications to calculate the eigenval-
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Figure 10. Delayed vertex migration

G(N,E) |N | |E|
kg1 1,048,576 5,360,368
kg4m68m 4,194,304 68,671,566
web-Google 875,713 5,105,039
LiveJournal1 4,847,571 68,993,773
hollywood-2011 2,180,759 228,985,632
arabic-2005 22,744,080 639,999,458

Table 1. Datasets—N , E denote nodes and edges, respec-
tively. Graphs with prefix kg are synthetic.

ning is disabled for superstep SS

t+1 after applying delayed
migration to ensure the consistency of the migration plans.

An example is shown in Figure 10, where Vertex 7 is
migrated using delayed migration. As Vertex 7 migrates,
the ownership of Vertex 7 is moved to Worker new and
messages sent to Vertex 7 at SS

t+1 are addressed to
Worker new. At the barrier of SS

t+1, Worker old sends
the edge information and state of v to Worker new and starts
SS

t+2 with v fully migrated to Worker new.
With delayed migration, the consistency of computation

is maintained without introducing additional network cost
for vertices with large message queues. Since delayed mi-
gration uses two supersteps to complete, Mizan may need
more steps before it converges on a balanced state.

5. Evaluation
We implemented Mizan using C++ and MPI and compared
it against Giraph [8], a Pregel clone implemented in Java
on top of Hadoop. We ran our experiments on a local clus-
ter of 21 machines equipped with a mix of i5 and i7 pro-
cessors with 16GB RAM on each machine. We also used
an IBM Blue Gene/P supercomputer with 1024 PowerPC-
450 CPUs, each with 4 cores at 850MHz and 4GB RAM.
We downloaded publicly available datasets from the Stan-
ford Network Analysis Project6 and from The Laboratory for

6
http://snap.stanford.edu

Figure 11. Comparing Static Mizan vs. Giraph using
PageRank on social network and random graphs

Web Algorithmics (LAW) [2, 20]. We also generated syn-
thetic datasets using the Kronecker [21] generator that mod-
els the structure of real life networks. The details are shown
in Table 1.

To better isolate the effects of dynamic migration on
system performance, we implemented three variations of
Mizan: Static, Work Stealing (WS), and Mizan. Static Mizan
disables any dynamic migration and uses either hash-based,
range-based or min-cuts graph pre-partitioning (rendering
it similar to Giraph). Work Stealing (WS) Mizan is our
attempt to emulate Pregel’s coarse-grained dynamic load
balancing behavior (described in [23]). Finally, Mizan is our
framework that supports dynamic migration as described in
Sections 3 and 4.

We evaluated Mizan across three dimensions: partitioning
scheme, graph structure, and algorithm behavior. We par-
tition the datasets using three schemes: hash-based, range-
based, and METIS partitioning. We run our experiments
against both social and random graphs. Finally, we experi-
mented with the algorithms described in Section 2.1.

5.1 Giraph vs. Mizan
We picked Giraph for its popularity as an open source Pregel
framework with broad adoption. We only compared Giraph
to Static Mizan, which allows us to evaluate our base (non-
dynamic) implementation. Mizan’s dynamic migration is
evaluated later in this section. To further equalize Giraph and
the Static Mizan, we disabled the fault tolerance feature of
Giraph to eliminate any additional overhead resulting from
frequent snapshots during runtime. In this section, we report
the results using PageRank (a stationary and well balanced
algorithm) using different graph structures.

In Figure 11, we ran both frameworks on social network
and random graphs. As shown, Static Mizan outperforms Gi-
raph by a large margin, up to four times faster than Giraph in
kg4m68, which contains around 70M edges. We also com-
pared both systems when increasing the number of nodes
in random structure graphs. As shown in Figure 12, Static
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Categolize	
  Graph	
  Algorithms	


•  Not	
  only	
  graph	
  structure,	
  but	
  also	
  graph	
  
algorithms	
  can	
  affect	
  the	
  workload	
  balance.	
  	
  

•  They	
  can	
  be	
  categolized	
  according	
  to	
  
communica2on	
  characteris2cs.	
  
– Sta2onary	
  
– Non-­‐sta2onary	
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Categolize	
  Graph	
  Algorithms	


Sta$onary	

•  Distribu2ons	
  of	
  sent	
  

messages	
  do	
  not	
  change.	
  
•  Example	
  

–  PageRank	
  
–  Diameter	
  es2ma2on	
  
–  Finding	
  weakly	
  connected	
  

components	


Non-­‐Sta$onary	

•  Des2na2ons	
  or	
  sizes	
  of	
  

messages	
  can	
  change.	
  
•  Example	
  

–  Distributed	
  minimal	
  spanning	
  
tree	
  construc2on	
  (DMST)	
  

–  Graph	
  queries	
  
–  Simula2ons	
  on	
  social	
  network	
  

graphs	
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Categolize	
  Graph	
  Algorithms	
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•  While	
  running	
  two	
  
algorithms	
  in	
  21	
  nodes,	
  
Non-­‐sta2onary	
  
algorithms	
  (DMST)	
  sent	
  
more	
  and	
  more	
  
messages.	


Figure 1. Factors that can affect the runtime in the Pregel
framework

tioning methods divide a dataset based on a simple heuristic:
to evenly distribute vertices across compute nodes, irrespec-
tive of their edge connectivity. Min-cut based partitioning,
on the other hand, considers vertex connectivity and parti-
tions the data such that it places strongly connected vertices
close to each other (i.e., on the same cluster). The result-
ing performance of these partitioning approaches is, how-
ever, graph dependent. To demonstrate this variability, we
ran a simple—and highly predictable—PageRank algorithm
on different datasets (summarized in Table 1) using the three
popular partitioning methods. Figure 2 shows that none of
the partitioning methods consistently outperforms the rest,
noting that ParMETIS [15] partitioning cannot be performed
on the arabic-2005 graph due to memory limitations.

In addition to the graph structure, the running algorithm
can also affect the workload balance across compute nodes.
Broadly speaking, graph algorithms can be divided into
two categories (based on their communication characteris-
tics across supersteps): stationary and non-stationary.

Stationary Graph Algorithms. An algorithm is stationary
if its active vertices send and receive the same distribution of
messages across supersteps. At the end of a stationary algo-
rithm, all active vertices become inactive (terminate) during
the same superstep. Usually graph algorithms represented by
a matrix-vector multiplication2 are stationary algorithms, in-
cluding PageRank, diameter estimation and finding weakly
connected components.

Non-stationary Graph Algorithms. A graph algorithm is
non-stationary if the destination or size of its outgoing mes-
sages changes across supersteps. Such variations can create
workload imbalances across supersteps. Examples of non-
stationary algorithms include distributed minimal spanning
tree construction (DMST), graph queries, and various simu-
lations on social network graphs (e.g., advertisement propa-
gation).

2 The matrix represents the graph adjacency matrix and the vector represents
the vertices’ value.

Figure 2. The difference in execution time when processing
PageRank on different graphs using hash-based, range-based
and min-cuts partitioning. Because of its size, arabic-2005
cannot be partitioned using min-cuts (ParMETIS) in our
local cluster.
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Figure 3. The difference between stationary and non-
stationary graph algorithms with respect to the incoming
messages. Total represents the sum across all workers and
Max represents the maximum amount (on a single worker)
across all workers.

To illustrate the differences between the two classes of
algorithms, we compared the runtime behavior of PageRank
(stationary) against DMST (non-stationary) when process-
ing the same dataset (LiveJournal1) on a cluster of 21 ma-
chines. The input graph was partitioned using a hash func-
tion. Figure 3 shows the variability in the incoming messages
per superstep for all workers. In particular, the variability can
span over five orders of magnitude for non-stationary algo-
rithms.

The remainder of the section describes four popular graph
mining algorithms that we use throughout the paper. They
cover both stationary and non-stationary algorithms.

2.1 Example Algorithms

PageRank. PageRank [24] is a stationary algorithm that
uses matrix-vector multiplications to calculate the eigenval-
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3.	
  Mizan	


•  Common	
  point	
  with	
  Pregel	
  
– A	
  BSP-­‐based	
  graph	
  processing	
  system	
  
– Reads	
  graph	
  and	
  par22on	
  before	
  supersteps	
  

•  Different	
  point	
  with	
  Pregel	
  
– Focuses	
  on	
  efficient	
  dynamic	
  load	
  balancing	
  of	
  
both	
  computa2on	
  and	
  communica2on	
  

– Moves	
  some	
  ver2ces	
  across	
  workers	
  (migra2on)	
  
•  Distributed	
  run2me	
  monitoring	
  
•  Distributed	
  migra2on	
  planner	
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Monitoring	


•  Mizan	
  system	
  monitors	
  three	
  metrics	
  
– The	
  number	
  of	
  outgoing	
  messages	
  
•  Counts	
  messages	
  to	
  other	
  ver2ces	
  in	
  remote	
  workers.	
  
•  Local	
  outgoing	
  ones	
  never	
  affect	
  network	
  cost.	
  

– The	
  number	
  of	
  total	
  incoming	
  messages	
  
•  Counts	
  ones	
  from	
  remote	
  ver2ces	
  and	
  locally	
  generated.	
  

– The	
  response	
  2me	
  (execu2on	
  2me)	
  
•  Measured	
  for	
  each	
  vertex	
  at	
  each	
  superstep.	
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the response time (execution time) during the current super-
step:

Outgoing Messages. Only outgoing messages to other ver-
tices in remote workers are counted since the local outgoing
messages are rerouted to the same worker and do not incur
any actual network cost.

Incoming Messages. All incoming messages are monitored,
those that are received from remote vertices and those lo-
cally generated. This is because queue size can affect the
performance of the vertex (i.e., when its buffer capacity is
exhausted, paging to disk is required).

Response Time. The response time for each vertex is mea-
sured. It is the time when a vertex starts processing its in-
coming messages until it finishes.

3.2 Migration Planning
High values for any of the three metrics above may indicate
poor vertex placement, which leads to workload imbalance.
As with many constrained optimization problems, optimiz-
ing against three objectives is non-trivial. To reduce the op-
timization search space, Mizan’s migration planner finds the
strongest cause of workload imbalance among the three met-
rics and plans the vertex migration accordingly.

By design, all workers create and execute the migration
plan in parallel, without requiring any centralized coordina-
tion. The migration planner starts on every worker at the end
of each superstep (i.e., when all workers reach the synchro-
nization barrier), after it receives summary statistics (as de-
scribed in Section 3.1) from all other workers. Additionally,
the execution of the migration planner is sandwiched be-

Figure 6. Summary of Mizan’s Migration Planner

tween a second synchronization barrier as shown in Figure 5,
which is necessary to ensure correctness of the BSP model.
Mizan’s migration planner executes the following five steps,
summarized in Figure 6:

1. Identify the source of imbalance.

2. Select the migration objective (i.e., optimize for outgoing
messages, incoming messages, or response time).

3. Pair over-utilized workers with under-utilized ones.

4. Select vertices to migrate.

5. Migrate vertices.

STEP 1: Identify the source of imbalance. Mizan detects
imbalances across supersteps by comparing the summary
statistics of all workers against a normal random distribu-
tion and flagging outliers. Specifically, at the end of a su-
perstep, Mizan computes the z-score4 for all workers. If
any worker has z-score greater than z

def

, Mizan’s migra-
tion planner flags the superstep as imbalanced. We found that
z

def

= 1.96, the commonly recommend value [26], allows
for natural workload fluctuations across workers. We have
experimented with different values of z

def

and validated the
robustness of our choice.

STEP 2: Select the migration objective. Each worker—
identically—uses the summary statistics to compute the cor-
relation between outgoing messages and response time, and
also the correlation between incoming messages and re-
sponse time. The correlation scores are used to select the
objective to optimize for: to balance outgoing messages,
balance incoming messages, or balance computation time.
The default objective is to balance the response time. If the

4 The z-score Wz

i

= |x
i

�x

max

|
standard deviation

, where x

i

is the run time of
worker i
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the response time (execution time) during the current super-
step:

Outgoing Messages. Only outgoing messages to other ver-
tices in remote workers are counted since the local outgoing
messages are rerouted to the same worker and do not incur
any actual network cost.

Incoming Messages. All incoming messages are monitored,
those that are received from remote vertices and those lo-
cally generated. This is because queue size can affect the
performance of the vertex (i.e., when its buffer capacity is
exhausted, paging to disk is required).

Response Time. The response time for each vertex is mea-
sured. It is the time when a vertex starts processing its in-
coming messages until it finishes.

3.2 Migration Planning
High values for any of the three metrics above may indicate
poor vertex placement, which leads to workload imbalance.
As with many constrained optimization problems, optimiz-
ing against three objectives is non-trivial. To reduce the op-
timization search space, Mizan’s migration planner finds the
strongest cause of workload imbalance among the three met-
rics and plans the vertex migration accordingly.

By design, all workers create and execute the migration
plan in parallel, without requiring any centralized coordina-
tion. The migration planner starts on every worker at the end
of each superstep (i.e., when all workers reach the synchro-
nization barrier), after it receives summary statistics (as de-
scribed in Section 3.1) from all other workers. Additionally,
the execution of the migration planner is sandwiched be-
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tween a second synchronization barrier as shown in Figure 5,
which is necessary to ensure correctness of the BSP model.
Mizan’s migration planner executes the following five steps,
summarized in Figure 6:

1. Identify the source of imbalance.

2. Select the migration objective (i.e., optimize for outgoing
messages, incoming messages, or response time).

3. Pair over-utilized workers with under-utilized ones.

4. Select vertices to migrate.

5. Migrate vertices.

STEP 1: Identify the source of imbalance. Mizan detects
imbalances across supersteps by comparing the summary
statistics of all workers against a normal random distribu-
tion and flagging outliers. Specifically, at the end of a su-
perstep, Mizan computes the z-score4 for all workers. If
any worker has z-score greater than z

def

, Mizan’s migra-
tion planner flags the superstep as imbalanced. We found that
z

def

= 1.96, the commonly recommend value [26], allows
for natural workload fluctuations across workers. We have
experimented with different values of z

def

and validated the
robustness of our choice.

STEP 2: Select the migration objective. Each worker—
identically—uses the summary statistics to compute the cor-
relation between outgoing messages and response time, and
also the correlation between incoming messages and re-
sponse time. The correlation scores are used to select the
objective to optimize for: to balance outgoing messages,
balance incoming messages, or balance computation time.
The default objective is to balance the response time. If the

4 The z-score Wz
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is the run time of
worker i
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Detec2ng	
  Imbalance	


1.  Check	
  outlier	
  workers	
  comparing	
  the	
  
summary	
  sta2s2cs	
  of	
  all	
  ones.	
  

2.  Select	
  the	
  objec2ve	
  what	
  it	
  will	
  op2mize	
  with	
  
calcula2ng	
  correla2on	
  of	
  the	
  metrics.	
  
–  To	
  balance	
  outgoing	
  messages	
  
–  To	
  balance	
  incoming	
  messages	
  
–  To	
  balance	
  computa2on	
  2me	
  (default)	
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Selec2ng	
  Ver2ces	


3.  Pair	
  workers	
  by	
  metrics.	
  
–  If	
  there	
  are	
  n	
  workers,	
  
	
   	
  top	
  n	
  and	
  n-­‐i	
  	
  workers	
  should	
  be	
  pair.	
  
–  Workers	
  without	
  enough	
  memory	
  are	
  unavailable.	
  

4.  Select	
  ver2ces	
  to	
  move	
  in	
  order	
  to	
  minimize	
  
the	
  difference	
  of	
  sum	
  of	
  workloads	
  to	
  be	
  
migrated	
  and	
  sum	
  of	
  those	
  outliers.	
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outgoing or incoming messages are highly correlated with
the response time, then Mizan chooses the objective with
highest correlation score. The computation of the correlation
score is described in Appendix A.

STEP 3: Pair over-utilized workers with under-utilized
ones. Each overutilized worker that needs to migrate ver-
tices out is paired with a single underutilized worker. While
complex pairings are possible, we choose a design that is ef-
ficient to execute, especially since the exact number of ver-
tices that different workers plan to migrate is not globally
known. Similar to the previous two steps in the migration
plan, this step is executed by each worker without explicit
global synchronization. Using the summary statistics for the
chosen migration objective (in Step 2), each worker creates
an ordered list of all workers. For example, if the objective is
to balance outgoing messages, then the list will order work-
ers from highest to lowest outgoing messages. The resulting
list, thus, places overutilized workers at the top and least uti-
lized workers at the bottom. The pairing function then suc-
cessively matches workers from opposite ends of the ordered
list. As depicted in Figure 7, if the list contains n elements
(one for each worker), then the worker at position i is paired
with the worker at position n � i. In cases where a worker
does not have memory to receive any vertices, the worker is
marked unavailable in the list.

STEP 4: Select vertices to migrate. The number of vertices
to be selected from an overutilized worker depends on the
difference of the selected migration objective statistics with
its paired worker. Assume that w

x

is a worker that needs
to migrate out a number of vertices, and is paired with the
receiver, w

y

. The load that should be migrated to the under-
utilized worker is defined as �

xy

, which equals to half the
difference in statistics of the migration objective between the
two workers. The selection criteria of the vertices depends
on the distribution of the statistics of the migration objective,
where the statistics of each vertex is compared against a nor-
mal distribution. A vertex is selected if it is an outlier (i.e.,
if its V z

i

stat

5). For example, if the migrating objective is to
balance the number of remote outgoing messages, vertices
with large remote outgoing messages are selected to migrate
to the underutilized worker. The sum of the statistics of the
selected vertices is denoted by

P
V

stat

which should mini-
mize |�

xy

�
P

V

stat

| to ensure the balance between w

x

and
w

y

in the next superstep. If there not enough outlier vertices
are found, a random set of vertices are selected to minimize
|�

xy

�
P

V

stat

|.
STEP 5: Migrate vertices. After the vertex selection pro-
cess, the migrating workers start sending the selected ver-
tices while other workers wait at the migration barrier. A
migrating worker starts sending the selected set of vertices
to its unique target worker, where each vertex is encoded

5 The z-score V z

i

stat

=
|x

i

�x

avg

|
standard deviation

, where x

i

is the statistics of
the migration objective of vertex i is greater than the z

def
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

Figure 7. Matching senders (workers with vertices to mi-
grate) with receivers using their summary statistics

into a stream that includes the vertex ID, state, edge informa-
tion and the received messages it will process. Once a ver-
tex stream is successfully sent, the sending worker deletes
the sent vertices so that it does not run them in the next su-
perstep. The receiving worker, on the other hand, receives
vertices (together with their messages) and prepares to run
them in the next superstep. The next superstep is started once
all workers finish migrating vertices and reach the migration
barrier. The complexity of the migration process is directly
related to the size of vertices being migrated.

4. Implementation
Mizan consists of four modules, shown in Figure 8: the
BSP Processor, Storage Manager, Communicator, and Mi-
gration Planner. The BSP Processor implements the Pregel
APIs, consisting primarily of the Compute class, and the
SendMessageTo, GetOutEdgeIterator and getValue

methods. The BSP Processor operates on the data struc-
tures of the graph and executes the user’s algorithm. It also
performs barrier synchronization with other workers at the
end of each superstep. The Storage Manager module main-
tains access atomicity and correctness of the graph’s data,
and maintains the data structures for message queues. Graph
data can be read and written to either HDFS or local disks,
depending on how Mizan is deployed. The Communicator
module uses MPI to enable communication between work-
ers; it also maintains distributed vertex ownership informa-
tion. Finally, the Migration Planner operates transparently
across superstep barriers to maintain the dynamic workload
balance.

Mizan allows the user’s code to manipulate the graph con-
nectivity by adding and removing vertices and edges at any
superstep. It also guarantees that all graph mutation com-
mands issued at superstep

x

are executed at the end of the
same superstep and before the BSP barrier, which is illus-
trated in Figure 5. Therefore, vertex migrations performed
by Mizan do not conflict with the user’s graph mutations and
Mizan always considers the most recent graph structure for
migration planning.

When implementing Mizan, we wanted to avoid having a
centralized controller. Overall, the BSP (Pregel) model nat-
urally lends itself to a decentralized implementation. There
were, however, three key challenges in implementing a dis-
tributed control plane that supports fine-grained vertex mi-
gration. The first challenge was in maintaining vertex own-
ership so that vertices can be freely migrated across work-
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Migra2ng	
  Ver2ces	


5.  To	
  migrate	
  ver2ces,	
  each	
  worker	
  will	
  do	
  that	
  
in	
  the	
  migra2on	
  barrier:	
  
–  Sending	
  worker	
  
•  Sends	
  encoded	
  stream	
  with	
  vertex	
  ID,	
  state,	
  edge	
  

informa2on	
  and	
  received	
  messages.	
  
•  Ater	
  the	
  stream	
  is	
  sent,	
  deletes	
  the	
  ver2ces.	
  

–  Receiving	
  worker	
  
•  Receives	
  ver2ces	
  and	
  messages.	
  
•  Prepares	
  to	
  run	
  them	
  in	
  the	
  next	
  superstep.	
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4.	
  Implementa2on	


•  In	
  Mizan,	
  each	
  worker	
  
has	
  4	
  modules	
  
–  BSP	
  Processor	
  

•  Implemented	
  Pregel	
  APIs	
  

–  Storage	
  Manager	
  
•  Maintains	
  the	
  graph	
  data	
  
always	
  correct	
  

–  Communicator	
  
•  Uses	
  MPI	
  to	
  communicate	
  
with	
  other	
  workers	
  	
  

– Migra2on	
  Planner	
  
•  Operate	
  across	
  barriers	
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Figure 8. Architecture of Mizan

ers. This is different from existing approaches (e.g., Pregel,
Giraph, and GoldenOrb), which operate on a much coarser
granularity (clusters of vertices) to enable scalability. The
second challenge was in allowing fast updates to the vertex
ownership information as vertices get migrated. The third
challenge was in minimizing the cost of migrating vertices
with large data structures. In this section, we discuss the im-
plementation details around these three challenges, which al-
low Mizan to achieve its effectiveness and scalability.

4.1 Vertex Ownership
With huge datasets, Mizan workers cannot maintain the
management information for all vertices in the graph. Man-
agement information includes the collected statistics for
each vertex (described in Section 3.1) and the location (own-
ership) of each vertex. While per-vertex monitoring statis-
tics are only used locally by the worker, vertex ownership
information is needed by all workers. When vertices send
messages, workers need to know the destination address for
each message. With frequent vertex migration, updating the
location of the vertices across all workers can easily create a
communication bottleneck.

To overcome this challenge, we use a distributed hash ta-
ble (DHT) [1] to implement a distributed lookup service. The
DHT implementation allows Mizan to distribute the over-
head of looking up and updating vertex location across all
workers. The DHT stores a set of (key,value) pairs, where
the key represents a vertex ID and the value represents its
current physical location. Each vertex is assigned a home
worker. The role of the home worker is to maintain the
current location of the vertex. A vertex can physically ex-
ist in any worker, including its home worker. The DHT
uses a globally defined hash function that maps the keys to
their associated home workers, such that home worker =

location hash(key).
During a superstep, when a (source) vertex sends a mes-

sage to another (target) vertex, the message is passed to the
Communicator. If the target vertex is located on the same
worker, it is rerouted back to the appropriate queue. Other-
wise, the source worker uses the location hash function
to locate and query the home worker for the target vertex.
The home worker responds back with the actual physical lo-

Figure 9. Migrating vertex v

i

from Worker 1 to Worker 2,
while updating its DHT home worker (Worker 3)

cation of target vertex. The source worker finally sends the
queued message to the current worker for the target vertex. It
also caches the physical location to minimize future lookups.

4.2 DHT Updates After Vertex Migration
Figure 9 depicts the vertex migration process. When a vertex
v migrates between two workers, the receiving worker sends
the new location of v to the home worker of v. The home
worker, in turn, sends an update message to all workers that
have previously asked for—and, thus, potentially cached—
the location of v. Since Mizan migrates vertices in the barrier
between two supersteps, all workers that have cached the
location of the migrating vertex will receive the updated
physical location from the home worker before the start of
the new superstep.

If for any reason a worker did not receive the updated
location, the messages will be sent to the last known phys-
ical location of v. The receiving worker, which no longer
owns the vertex, will simply buffer the incorrectly routed
messages, ask for the new location for v, and reroute the
messages to the correct worker.

4.3 Migrating Vertices with Large Message Size
Migrating a vertex to another worker requires moving its
queued messages and its entire state (which includes its
ID, value, and neighbors). Especially when processing large
graphs, a vertex can have a significant number of queued
messages, which are costly to migrate. To minimize the cost,
Mizan migrates large vertices using a delayed migration
process that spreads the migration over two supersteps. In-
stead of physically moving the vertex with its large message
queue, delayed migration only moves the vertex’s informa-
tion and the ownership to the new worker. Assuming w

old

is
the old owner and w

new

is the new one, w
old

continues to
process the migrating vertex v in the next superstep, SS

t+1.
w

new

receives the messages for v, which will be processed
at the following superstep, SS

t+2. At the end of SS
t+1, w

old

sends the new value of v, calculated at SS
t+1, to w

new

and
completes the delayed migration. Note that migration plan-

���

24	




Vertex	
  Ownership	
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  will	
  not	
  maintain	
  centralized	
  vertex	
  
management	
  especially	
  with	
  huge	
  one.	
  

•  A	
  distributed	
  hash	
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  (DHT)	
  is	
  used	
  to	
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  a	
  distributed	
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  service.	
  
–  It	
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  key	
  (ID)	
  and	
  value	
  (physical	
  loca2on)	
  sets.	
  
– A	
  “home”	
  worker	
  maintains	
  current	
  loca2on	
  of	
  
assigned	
  ver2ces.	
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ers. This is different from existing approaches (e.g., Pregel,
Giraph, and GoldenOrb), which operate on a much coarser
granularity (clusters of vertices) to enable scalability. The
second challenge was in allowing fast updates to the vertex
ownership information as vertices get migrated. The third
challenge was in minimizing the cost of migrating vertices
with large data structures. In this section, we discuss the im-
plementation details around these three challenges, which al-
low Mizan to achieve its effectiveness and scalability.

4.1 Vertex Ownership
With huge datasets, Mizan workers cannot maintain the
management information for all vertices in the graph. Man-
agement information includes the collected statistics for
each vertex (described in Section 3.1) and the location (own-
ership) of each vertex. While per-vertex monitoring statis-
tics are only used locally by the worker, vertex ownership
information is needed by all workers. When vertices send
messages, workers need to know the destination address for
each message. With frequent vertex migration, updating the
location of the vertices across all workers can easily create a
communication bottleneck.

To overcome this challenge, we use a distributed hash ta-
ble (DHT) [1] to implement a distributed lookup service. The
DHT implementation allows Mizan to distribute the over-
head of looking up and updating vertex location across all
workers. The DHT stores a set of (key,value) pairs, where
the key represents a vertex ID and the value represents its
current physical location. Each vertex is assigned a home
worker. The role of the home worker is to maintain the
current location of the vertex. A vertex can physically ex-
ist in any worker, including its home worker. The DHT
uses a globally defined hash function that maps the keys to
their associated home workers, such that home worker =

location hash(key).
During a superstep, when a (source) vertex sends a mes-

sage to another (target) vertex, the message is passed to the
Communicator. If the target vertex is located on the same
worker, it is rerouted back to the appropriate queue. Other-
wise, the source worker uses the location hash function
to locate and query the home worker for the target vertex.
The home worker responds back with the actual physical lo-
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Figure 9. Migrating vertex v

i

from Worker 1 to Worker 2,
while updating its DHT home worker (Worker 3)

cation of target vertex. The source worker finally sends the
queued message to the current worker for the target vertex. It
also caches the physical location to minimize future lookups.

4.2 DHT Updates After Vertex Migration
Figure 9 depicts the vertex migration process. When a vertex
v migrates between two workers, the receiving worker sends
the new location of v to the home worker of v. The home
worker, in turn, sends an update message to all workers that
have previously asked for—and, thus, potentially cached—
the location of v. Since Mizan migrates vertices in the barrier
between two supersteps, all workers that have cached the
location of the migrating vertex will receive the updated
physical location from the home worker before the start of
the new superstep.

If for any reason a worker did not receive the updated
location, the messages will be sent to the last known phys-
ical location of v. The receiving worker, which no longer
owns the vertex, will simply buffer the incorrectly routed
messages, ask for the new location for v, and reroute the
messages to the correct worker.

4.3 Migrating Vertices with Large Message Size
Migrating a vertex to another worker requires moving its
queued messages and its entire state (which includes its
ID, value, and neighbors). Especially when processing large
graphs, a vertex can have a significant number of queued
messages, which are costly to migrate. To minimize the cost,
Mizan migrates large vertices using a delayed migration
process that spreads the migration over two supersteps. In-
stead of physically moving the vertex with its large message
queue, delayed migration only moves the vertex’s informa-
tion and the ownership to the new worker. Assuming w

old

is
the old owner and w

new

is the new one, w
old

continues to
process the migrating vertex v in the next superstep, SS

t+1.
w

new

receives the messages for v, which will be processed
at the following superstep, SS

t+2. At the end of SS
t+1, w

old

sends the new value of v, calculated at SS
t+1, to w

new

and
completes the delayed migration. Note that migration plan-
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Figure 10. Delayed vertex migration

G(N,E) |N | |E|
kg1 1,048,576 5,360,368
kg4m68m 4,194,304 68,671,566
web-Google 875,713 5,105,039
LiveJournal1 4,847,571 68,993,773
hollywood-2011 2,180,759 228,985,632
arabic-2005 22,744,080 639,999,458

Table 1. Datasets—N , E denote nodes and edges, respec-
tively. Graphs with prefix kg are synthetic.

ning is disabled for superstep SS

t+1 after applying delayed
migration to ensure the consistency of the migration plans.

An example is shown in Figure 10, where Vertex 7 is
migrated using delayed migration. As Vertex 7 migrates,
the ownership of Vertex 7 is moved to Worker new and
messages sent to Vertex 7 at SS

t+1 are addressed to
Worker new. At the barrier of SS

t+1, Worker old sends
the edge information and state of v to Worker new and starts
SS

t+2 with v fully migrated to Worker new.
With delayed migration, the consistency of computation

is maintained without introducing additional network cost
for vertices with large message queues. Since delayed mi-
gration uses two supersteps to complete, Mizan may need
more steps before it converges on a balanced state.

5. Evaluation
We implemented Mizan using C++ and MPI and compared
it against Giraph [8], a Pregel clone implemented in Java
on top of Hadoop. We ran our experiments on a local clus-
ter of 21 machines equipped with a mix of i5 and i7 pro-
cessors with 16GB RAM on each machine. We also used
an IBM Blue Gene/P supercomputer with 1024 PowerPC-
450 CPUs, each with 4 cores at 850MHz and 4GB RAM.
We downloaded publicly available datasets from the Stan-
ford Network Analysis Project6 and from The Laboratory for

6
http://snap.stanford.edu

Figure 11. Comparing Static Mizan vs. Giraph using
PageRank on social network and random graphs

Web Algorithmics (LAW) [2, 20]. We also generated syn-
thetic datasets using the Kronecker [21] generator that mod-
els the structure of real life networks. The details are shown
in Table 1.

To better isolate the effects of dynamic migration on
system performance, we implemented three variations of
Mizan: Static, Work Stealing (WS), and Mizan. Static Mizan
disables any dynamic migration and uses either hash-based,
range-based or min-cuts graph pre-partitioning (rendering
it similar to Giraph). Work Stealing (WS) Mizan is our
attempt to emulate Pregel’s coarse-grained dynamic load
balancing behavior (described in [23]). Finally, Mizan is our
framework that supports dynamic migration as described in
Sections 3 and 4.

We evaluated Mizan across three dimensions: partitioning
scheme, graph structure, and algorithm behavior. We par-
tition the datasets using three schemes: hash-based, range-
based, and METIS partitioning. We run our experiments
against both social and random graphs. Finally, we experi-
mented with the algorithms described in Section 2.1.

5.1 Giraph vs. Mizan
We picked Giraph for its popularity as an open source Pregel
framework with broad adoption. We only compared Giraph
to Static Mizan, which allows us to evaluate our base (non-
dynamic) implementation. Mizan’s dynamic migration is
evaluated later in this section. To further equalize Giraph and
the Static Mizan, we disabled the fault tolerance feature of
Giraph to eliminate any additional overhead resulting from
frequent snapshots during runtime. In this section, we report
the results using PageRank (a stationary and well balanced
algorithm) using different graph structures.

In Figure 11, we ran both frameworks on social network
and random graphs. As shown, Static Mizan outperforms Gi-
raph by a large margin, up to four times faster than Giraph in
kg4m68, which contains around 70M edges. We also com-
pared both systems when increasing the number of nodes
in random structure graphs. As shown in Figure 12, Static
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messages sent to Vertex 7 at SS

t+1 are addressed to
Worker new. At the barrier of SS
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the edge information and state of v to Worker new and starts
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t+2 with v fully migrated to Worker new.
With delayed migration, the consistency of computation

is maintained without introducing additional network cost
for vertices with large message queues. Since delayed mi-
gration uses two supersteps to complete, Mizan may need
more steps before it converges on a balanced state.

5. Evaluation
We implemented Mizan using C++ and MPI and compared
it against Giraph [8], a Pregel clone implemented in Java
on top of Hadoop. We ran our experiments on a local clus-
ter of 21 machines equipped with a mix of i5 and i7 pro-
cessors with 16GB RAM on each machine. We also used
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Web Algorithmics (LAW) [2, 20]. We also generated syn-
thetic datasets using the Kronecker [21] generator that mod-
els the structure of real life networks. The details are shown
in Table 1.

To better isolate the effects of dynamic migration on
system performance, we implemented three variations of
Mizan: Static, Work Stealing (WS), and Mizan. Static Mizan
disables any dynamic migration and uses either hash-based,
range-based or min-cuts graph pre-partitioning (rendering
it similar to Giraph). Work Stealing (WS) Mizan is our
attempt to emulate Pregel’s coarse-grained dynamic load
balancing behavior (described in [23]). Finally, Mizan is our
framework that supports dynamic migration as described in
Sections 3 and 4.

We evaluated Mizan across three dimensions: partitioning
scheme, graph structure, and algorithm behavior. We par-
tition the datasets using three schemes: hash-based, range-
based, and METIS partitioning. We run our experiments
against both social and random graphs. Finally, we experi-
mented with the algorithms described in Section 2.1.

5.1 Giraph vs. Mizan
We picked Giraph for its popularity as an open source Pregel
framework with broad adoption. We only compared Giraph
to Static Mizan, which allows us to evaluate our base (non-
dynamic) implementation. Mizan’s dynamic migration is
evaluated later in this section. To further equalize Giraph and
the Static Mizan, we disabled the fault tolerance feature of
Giraph to eliminate any additional overhead resulting from
frequent snapshots during runtime. In this section, we report
the results using PageRank (a stationary and well balanced
algorithm) using different graph structures.

In Figure 11, we ran both frameworks on social network
and random graphs. As shown, Static Mizan outperforms Gi-
raph by a large margin, up to four times faster than Giraph in
kg4m68, which contains around 70M edges. We also com-
pared both systems when increasing the number of nodes
in random structure graphs. As shown in Figure 12, Static
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Table 1. Datasets—N , E denote nodes and edges, respec-
tively. Graphs with prefix kg are synthetic.

ning is disabled for superstep SS

t+1 after applying delayed
migration to ensure the consistency of the migration plans.

An example is shown in Figure 10, where Vertex 7 is
migrated using delayed migration. As Vertex 7 migrates,
the ownership of Vertex 7 is moved to Worker new and
messages sent to Vertex 7 at SS

t+1 are addressed to
Worker new. At the barrier of SS

t+1, Worker old sends
the edge information and state of v to Worker new and starts
SS

t+2 with v fully migrated to Worker new.
With delayed migration, the consistency of computation

is maintained without introducing additional network cost
for vertices with large message queues. Since delayed mi-
gration uses two supersteps to complete, Mizan may need
more steps before it converges on a balanced state.

5. Evaluation
We implemented Mizan using C++ and MPI and compared
it against Giraph [8], a Pregel clone implemented in Java
on top of Hadoop. We ran our experiments on a local clus-
ter of 21 machines equipped with a mix of i5 and i7 pro-
cessors with 16GB RAM on each machine. We also used
an IBM Blue Gene/P supercomputer with 1024 PowerPC-
450 CPUs, each with 4 cores at 850MHz and 4GB RAM.
We downloaded publicly available datasets from the Stan-
ford Network Analysis Project6 and from The Laboratory for
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Web Algorithmics (LAW) [2, 20]. We also generated syn-
thetic datasets using the Kronecker [21] generator that mod-
els the structure of real life networks. The details are shown
in Table 1.

To better isolate the effects of dynamic migration on
system performance, we implemented three variations of
Mizan: Static, Work Stealing (WS), and Mizan. Static Mizan
disables any dynamic migration and uses either hash-based,
range-based or min-cuts graph pre-partitioning (rendering
it similar to Giraph). Work Stealing (WS) Mizan is our
attempt to emulate Pregel’s coarse-grained dynamic load
balancing behavior (described in [23]). Finally, Mizan is our
framework that supports dynamic migration as described in
Sections 3 and 4.

We evaluated Mizan across three dimensions: partitioning
scheme, graph structure, and algorithm behavior. We par-
tition the datasets using three schemes: hash-based, range-
based, and METIS partitioning. We run our experiments
against both social and random graphs. Finally, we experi-
mented with the algorithms described in Section 2.1.

5.1 Giraph vs. Mizan
We picked Giraph for its popularity as an open source Pregel
framework with broad adoption. We only compared Giraph
to Static Mizan, which allows us to evaluate our base (non-
dynamic) implementation. Mizan’s dynamic migration is
evaluated later in this section. To further equalize Giraph and
the Static Mizan, we disabled the fault tolerance feature of
Giraph to eliminate any additional overhead resulting from
frequent snapshots during runtime. In this section, we report
the results using PageRank (a stationary and well balanced
algorithm) using different graph structures.

In Figure 11, we ran both frameworks on social network
and random graphs. As shown, Static Mizan outperforms Gi-
raph by a large margin, up to four times faster than Giraph in
kg4m68, which contains around 70M edges. We also com-
pared both systems when increasing the number of nodes
in random structure graphs. As shown in Figure 12, Static
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Figure 12. Comparing Mizan vs. Giraph using PageRank
on regular random graphs, the graphs are uniformly dis-
tributed with each has around 17M edge

Mizan consistently outperforms Giraph in all datasets and
reaches up to three times faster with 16 million vertexes.
While the execution time of both frameworks increases lin-
early with graph size, the rate of increase—slope of the
graph—for Giraph (0.318) is steeper than Mizan (0.09), in-
dicating that Mizan also achieves better scalability.

The experiments in Figures 12 and 11 show that Giraph’s
implementation is inefficient. It is a non-trivial task to dis-
cover the source of inefficiency in Giraph since it is tightly
coupled with Hadoop. We suspect that part of the ineffi-
ciency is due to the initialization cost of the Hadoop jobs
and the high overhead of communication. Other factors, like
internal data structure choice and memory footprint, might
also play a role in this inefficiency.

5.2 Effectiveness of Dynamic Vertex Migration
Given the large performance difference between Static
Mizan and Giraph, we exclude Giraph from further exper-
iments and focus on isolating the effects of dynamic migra-
tion on the overall performance of the system.

Figure 13 shows the results for running PageRank on a
social graph with various partitioning schemes. We notice
that both hash-based and METIS partitioning achieve a bal-
anced workload for PageRank such that dynamic migration
did not improve the results. In comparison, range-based par-
titioning resulted in poor graph partitioning. In this case, we
observe Mizan (with dynamic partitioning) was able to re-
duce execution time by approximately 40% when compared
to the static version. We have also evaluated the diameter es-
timation algorithm, which behaves the same as PageRank,
but exchanges larger size messages. Mizan exhibited similar
behavior with diameter estimation; the results are omitted
for space considerations.

Figure 14 shows how Mizan’s dynamic migration was
able to optimize running PageRank starting with range-
based partitioning. The figure shows that Mizan’s migration
reduced both the variance in workers’ runtime and the su-

Figure 13. Comparing Static Mizan and Work Stealing
(Pregel clone) vs. Mizan using PageRank on a social graph
(LiveJournal1). The shaded part of each column repre-
sents the algorithm runtime while unshaded parts represents
the initial partitioning cost of the input graph.

perstep’s runtime. The same figure also shows that Mizan’s
migration alternated the optimization objective between the
number of outgoing messages and vertex response time, il-
lustrated as points on the superstep’s runtime trend.

By looking at both Figures 14 and 15, we observe that
the convergence of Mizan’s dynamic migration is correlated
with the algorithm’s runtime reduction. For the PageRank
algorithm with range-based partitioning, Mizan requires 13
supersteps to reach an acceptable balanced workload. Since
PageRank is a stationary algorithm, Mizan’s migration con-
verged quickly; we expect that it would require more super-
steps to converge on other algorithms and datasets. In gen-
eral, Mizan requires multiple supersteps before it balances
the workload. This also explains why running Mizan with
range-based partitioning is less efficient than running Mizan
with METIS or hash-based partitioning.

As described in Section 2.1, Top-K PageRank adds vari-
ability in the communication among the graph nodes. As
shown in Figure 16, such variability in the messages ex-
changed leads to minor variation in both hash-based and
METIS execution times. Similarly, in range partitioning,
Mizan had better performance than the static version. The
slight performance improvement arises from the fact that the
base algorithm (PageRank) dominates the execution time. If
a large number of queries are performed, the improvements
will be more significant.

To study the effect of algorithms with highly variable
messaging patterns, we evaluated Mizan using two algo-
rithms: DMST and advertisement propagation simulation.
In both cases, we used METIS to pre-partition the graph
data. METIS partitioning groups the strongly connected sub-
graphs into clusters, thus minimizing the global communica-
tion among each cluster.

In DMST, as discussed in Section 2.1, computation com-
plexity increases with vertex connectivity degree. Because
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dicating that Mizan also achieves better scalability.
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coupled with Hadoop. We suspect that part of the ineffi-
ciency is due to the initialization cost of the Hadoop jobs
and the high overhead of communication. Other factors, like
internal data structure choice and memory footprint, might
also play a role in this inefficiency.

5.2 Effectiveness of Dynamic Vertex Migration
Given the large performance difference between Static
Mizan and Giraph, we exclude Giraph from further exper-
iments and focus on isolating the effects of dynamic migra-
tion on the overall performance of the system.

Figure 13 shows the results for running PageRank on a
social graph with various partitioning schemes. We notice
that both hash-based and METIS partitioning achieve a bal-
anced workload for PageRank such that dynamic migration
did not improve the results. In comparison, range-based par-
titioning resulted in poor graph partitioning. In this case, we
observe Mizan (with dynamic partitioning) was able to re-
duce execution time by approximately 40% when compared
to the static version. We have also evaluated the diameter es-
timation algorithm, which behaves the same as PageRank,
but exchanges larger size messages. Mizan exhibited similar
behavior with diameter estimation; the results are omitted
for space considerations.

Figure 14 shows how Mizan’s dynamic migration was
able to optimize running PageRank starting with range-
based partitioning. The figure shows that Mizan’s migration
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sents the algorithm runtime while unshaded parts represents
the initial partitioning cost of the input graph.

perstep’s runtime. The same figure also shows that Mizan’s
migration alternated the optimization objective between the
number of outgoing messages and vertex response time, il-
lustrated as points on the superstep’s runtime trend.

By looking at both Figures 14 and 15, we observe that
the convergence of Mizan’s dynamic migration is correlated
with the algorithm’s runtime reduction. For the PageRank
algorithm with range-based partitioning, Mizan requires 13
supersteps to reach an acceptable balanced workload. Since
PageRank is a stationary algorithm, Mizan’s migration con-
verged quickly; we expect that it would require more super-
steps to converge on other algorithms and datasets. In gen-
eral, Mizan requires multiple supersteps before it balances
the workload. This also explains why running Mizan with
range-based partitioning is less efficient than running Mizan
with METIS or hash-based partitioning.

As described in Section 2.1, Top-K PageRank adds vari-
ability in the communication among the graph nodes. As
shown in Figure 16, such variability in the messages ex-
changed leads to minor variation in both hash-based and
METIS execution times. Similarly, in range partitioning,
Mizan had better performance than the static version. The
slight performance improvement arises from the fact that the
base algorithm (PageRank) dominates the execution time. If
a large number of queries are performed, the improvements
will be more significant.

To study the effect of algorithms with highly variable
messaging patterns, we evaluated Mizan using two algo-
rithms: DMST and advertisement propagation simulation.
In both cases, we used METIS to pre-partition the graph
data. METIS partitioning groups the strongly connected sub-
graphs into clusters, thus minimizing the global communica-
tion among each cluster.

In DMST, as discussed in Section 2.1, computation com-
plexity increases with vertex connectivity degree. Because
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•  Hash-­‐based	
  and	
  METIS	
  
par22oning	
  make	
  lijle	
  
differences.	
  

•  However,	
  effec2veness	
  
of	
  dynamic	
  migra2on	
  is	
  
showed	
  in	
  the	
  range-­‐
based	
  par22oning.	
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•  In	
  PageRank	
  algorithm,	
  
the	
  dynamic	
  migra2on	
  
is	
  correlated	
  with	
  
run2me	
  reduc2on.	
  
–  It	
  would	
  take	
  more	
  
supersteps	
  when	
  
workload	
  is	
  balanced	
  in	
  
other	
  algorithms.	
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Figure 14. Comparing Mizan’s migration cost with the su-
perstep’s (or the algorithm) runtime at each supertstep us-
ing PageRank on a social graph (LiveJournal1) starting
with range based partitioning. The points on the superstep’s
runtime trend represents Mizan’s migration objective at that
specific superstep.

Figure 15. Comparing both the total migrated vertices and
the maximum migrated vertices by a single worker for
PageRank on LiveJournal1 starting with range-based par-
titioning. The migration cost at each superstep is also shown.

of the quadratic complexity of computation as a function of
connectivity degree, some workers will suffer from exten-
sive workload while others will have light workload. Such
imbalance in the workload leads to the results shown in Fig-
ure 17. Mizan was able to reduce the imbalance in the work-
load, resulting in a large drop in execution time (two orders
of magnitude improvement). Even when using our version
of Pregel’s load balancing approach (called work stealing),
Mizan is roughly eight times faster.

Similar to DMST, the behavior of the advertising propa-
gation simulation algorithm varies across supersteps. In this
algorithm, a dynamic set of graph vertices communicate
heavily with each other, while others have little or no com-
munication. In every superstep, the communication behav-
ior differs depending on the state of the vertex. Therefore,
it creates an imbalance across the workers for every super-

Figure 16. Comparing static Mizan and Work Stealing
(Pregel clone) vs. Mizan using Top-K PageRanks on a so-
cial graph (LiveJournal1). The shaded part of each col-
umn represents the algorithm runtime while unshaded parts
represents the initial partitioning cost of the input graph.

Figure 17. Comparing Work stealing (Pregel clone) vs.
Mizan using DMST and Propagation Simulation on a metis
partitioned social graph (LiveJournal1)

Total runtime (s) 707
Data read time to memory (s) 72

Migrated vertices 1,062,559
Total migration time (s) 75

Average migrate time per vertex (µs) 70.5

Table 2. Overhead of Mizan’s migration process when
compared to the total runtime using range partitioning on
LiveJournal1 graph

step. Even METIS partitioning in such case is ill-suited since
workers’ load dynamically changes at runtime. As shown in
Figure 17, similar to DMST, Mizan is able to reduce such an
imbalance, resulting in approximately 200% speed up when
compared to the work stealing and static versions.
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Figure 14. Comparing Mizan’s migration cost with the su-
perstep’s (or the algorithm) runtime at each supertstep us-
ing PageRank on a social graph (LiveJournal1) starting
with range based partitioning. The points on the superstep’s
runtime trend represents Mizan’s migration objective at that
specific superstep.
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Figure 15. Comparing both the total migrated vertices and
the maximum migrated vertices by a single worker for
PageRank on LiveJournal1 starting with range-based par-
titioning. The migration cost at each superstep is also shown.

of the quadratic complexity of computation as a function of
connectivity degree, some workers will suffer from exten-
sive workload while others will have light workload. Such
imbalance in the workload leads to the results shown in Fig-
ure 17. Mizan was able to reduce the imbalance in the work-
load, resulting in a large drop in execution time (two orders
of magnitude improvement). Even when using our version
of Pregel’s load balancing approach (called work stealing),
Mizan is roughly eight times faster.

Similar to DMST, the behavior of the advertising propa-
gation simulation algorithm varies across supersteps. In this
algorithm, a dynamic set of graph vertices communicate
heavily with each other, while others have little or no com-
munication. In every superstep, the communication behav-
ior differs depending on the state of the vertex. Therefore,
it creates an imbalance across the workers for every super-

Figure 16. Comparing static Mizan and Work Stealing
(Pregel clone) vs. Mizan using Top-K PageRanks on a so-
cial graph (LiveJournal1). The shaded part of each col-
umn represents the algorithm runtime while unshaded parts
represents the initial partitioning cost of the input graph.

Figure 17. Comparing Work stealing (Pregel clone) vs.
Mizan using DMST and Propagation Simulation on a metis
partitioned social graph (LiveJournal1)

Total runtime (s) 707
Data read time to memory (s) 72

Migrated vertices 1,062,559
Total migration time (s) 75

Average migrate time per vertex (µs) 70.5

Table 2. Overhead of Mizan’s migration process when
compared to the total runtime using range partitioning on
LiveJournal1 graph

step. Even METIS partitioning in such case is ill-suited since
workers’ load dynamically changes at runtime. As shown in
Figure 17, similar to DMST, Mizan is able to reduce such an
imbalance, resulting in approximately 200% speed up when
compared to the work stealing and static versions.
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•  In	
  the	
  both	
  of	
  algorithms,	
  
Mizan	
  resulted	
  in	
  about	
  
200%	
  speed	
  up.	
  

Figure 14. Comparing Mizan’s migration cost with the su-
perstep’s (or the algorithm) runtime at each supertstep us-
ing PageRank on a social graph (LiveJournal1) starting
with range based partitioning. The points on the superstep’s
runtime trend represents Mizan’s migration objective at that
specific superstep.

Figure 15. Comparing both the total migrated vertices and
the maximum migrated vertices by a single worker for
PageRank on LiveJournal1 starting with range-based par-
titioning. The migration cost at each superstep is also shown.

of the quadratic complexity of computation as a function of
connectivity degree, some workers will suffer from exten-
sive workload while others will have light workload. Such
imbalance in the workload leads to the results shown in Fig-
ure 17. Mizan was able to reduce the imbalance in the work-
load, resulting in a large drop in execution time (two orders
of magnitude improvement). Even when using our version
of Pregel’s load balancing approach (called work stealing),
Mizan is roughly eight times faster.

Similar to DMST, the behavior of the advertising propa-
gation simulation algorithm varies across supersteps. In this
algorithm, a dynamic set of graph vertices communicate
heavily with each other, while others have little or no com-
munication. In every superstep, the communication behav-
ior differs depending on the state of the vertex. Therefore,
it creates an imbalance across the workers for every super-

Figure 16. Comparing static Mizan and Work Stealing
(Pregel clone) vs. Mizan using Top-K PageRanks on a so-
cial graph (LiveJournal1). The shaded part of each col-
umn represents the algorithm runtime while unshaded parts
represents the initial partitioning cost of the input graph.
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Figure 17. Comparing Work stealing (Pregel clone) vs.
Mizan using DMST and Propagation Simulation on a metis
partitioned social graph (LiveJournal1)

Total runtime (s) 707
Data read time to memory (s) 72

Migrated vertices 1,062,559
Total migration time (s) 75

Average migrate time per vertex (µs) 70.5

Table 2. Overhead of Mizan’s migration process when
compared to the total runtime using range partitioning on
LiveJournal1 graph

step. Even METIS partitioning in such case is ill-suited since
workers’ load dynamically changes at runtime. As shown in
Figure 17, similar to DMST, Mizan is able to reduce such an
imbalance, resulting in approximately 200% speed up when
compared to the work stealing and static versions.
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Scalability	
  of	
  Mizan	
Linux Cluster Blue Gene/P

hollywood-2011 arabic-2005

Processors Runtime (m) Processors Runtime (m)
2 154 64 144.7
4 79.1 128 74.6
8 40.4 256 37.9
16 21.5 512 21.5

1024 17.5

Table 3. Scalability of Mizan on a Linux Cluster of
16 machines (hollywood-2011 dataset), and an IBM
Blue Gene/P supercomputer (arabic-2005 dataset).

5.3 Overhead of Vertex Migration
To analyze migration cost, we measured the time for var-
ious performance metrics of Mizan. We used the PageR-
ank algorithm with a range-based partitioning of the
Live-Journal1 dataset on 21 workers. We chose range-
based partitioning as it provides the worst data distribution
according to previous experiments and therefore will trigger
frequent vertex migrations to balance the workload.

Table 2 reports the average cost of migrating as 70.5 µs
per vertex. In the LiveJournal1 dataset, Mizan paid a 9%
penalty of the total runtime to balance the workload, trans-
ferring over 1M vertices. As shown earlier in Figure 13, this
resulted in a 40% saving in computation time when com-
pared to Static Mizan. Moreover, Figures 14 and 15 compare
the algorithm runtime and the migration cost at each super-
step, the migration cost is at most 13% (at superstep 2) and
on average 6% for all supersteps that included a migration
phase.

5.4 Scalability of Mizan
We tested the scalability of Mizan on the Linux cluster
as shown in Table 3. We used two compute nodes as our
base reference as a single node was too small when running
the dataset (hollywood-2011), causing significant paging
activities. As Figure 18 shows, Mizan scales linearly with
the number of workers.

We were interested in performing large scale-out experi-
ments, well beyond what can be achieved on public clouds.
Since Mizan’s was written in C++ and uses MPI for mes-
sage passing, it was easily ported to IBM’s Blue Gene/P su-
percomputer. Once ported, we natively ran Mizan on 1024
Blue Gene/P compute nodes. The results are shown in Ta-
ble 3. We ran the PageRank algorithm using a huge graph
(arabic-2005) that contains 639M edges. As shown in
Figure 19, Mizan scales linearly from 64 to 512 compute
nodes then starts to flatten out as we increase to 1024 com-
pute nodes. The flattening was expected since with an in-
creased number of cores, compute nodes will spend more
time communicating than computing. We expect that as we
continue to increase the number of CPUs, most of the time

Figure 18. Speedup on Linux Cluster of 16 machines using
PageRank on the hollywood-2011 dataset.
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Figure 19. Speedup on Shaheen IBM Blue Gene/P super-
computer using PageRank on the arabic-2005 dataset.

will be spent communicating (which effectively breaks the
BSP model of overlapping communication and computa-
tion).

6. Related Work
In the past few years, a number of large scale graph process-
ing systems have been proposed. A common thread across
the majority of existing work is how to partition graph data
and how to balance computation across compute nodes. This
problem is known as applying dynamic load balancing to the
distributed graph data by utilizing on the fly graph partition-
ing, which Bruce et al. [11] assert to be either too expen-
sive or hard to parallelize. Mizan follows the Pregel model,
but focuses on dynamic load balancing of vertexes. In this
section, we examine the design aspects of existing work for
achieving a balanced workload.

Pregel and its Clones. The default partitioning scheme for
the input graph used by Pregel [23] is hash based. In every
superstep, Pregel assigns more than one subgraph (partition)
to a worker. While this load balancing approach helps in bal-
ancing computation in any superstep, it is coarse-grained
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frequent vertex migrations to balance the workload.

Table 2 reports the average cost of migrating as 70.5 µs
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will be spent communicating (which effectively breaks the
BSP model of overlapping communication and computa-
tion).

6. Related Work
In the past few years, a number of large scale graph process-
ing systems have been proposed. A common thread across
the majority of existing work is how to partition graph data
and how to balance computation across compute nodes. This
problem is known as applying dynamic load balancing to the
distributed graph data by utilizing on the fly graph partition-
ing, which Bruce et al. [11] assert to be either too expen-
sive or hard to parallelize. Mizan follows the Pregel model,
but focuses on dynamic load balancing of vertexes. In this
section, we examine the design aspects of existing work for
achieving a balanced workload.

Pregel and its Clones. The default partitioning scheme for
the input graph used by Pregel [23] is hash based. In every
superstep, Pregel assigns more than one subgraph (partition)
to a worker. While this load balancing approach helps in bal-
ancing computation in any superstep, it is coarse-grained
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•  While	
  using	
  smaller	
  
data	
  sets,	
  it	
  achieved	
  
the	
  scalability.	
  

•  However,	
  in	
  1024	
  nodes	
  	
  
with	
  larger	
  graph,	
  the	
  
scale	
  became	
  flajen.	
  
–  The	
  reason	
  may	
  be	
  that	
  
compu2ng	
  2me	
  cannot	
  
hide	
  too	
  much	
  
communica2on	
  2me.	




6.	
  Related	
  Work	


•  Pregel	
  and	
  its	
  Clones	
  
•  Power-­‐law	
  Op2mized	
  Graph	
  Processing	
  
Systems	
  

•  Shared	
  Memory	
  Graph	
  Processing	
  Systems	
  
•  Specialized	
  Graph	
  Systems	
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7.	
  Future	
  Work	


•  In	
  order	
  to	
  reduce	
  migra2on	
  costs,	
  the	
  
frequency	
  of	
  them	
  should	
  be	
  reduced.	
  
– Vertex	
  replica2on	
  proposed	
  by	
  PowerGraph	
  may	
  
be	
  useful.	
  

•  In	
  the	
  evalua2ons,	
  graph	
  was	
  par22oned	
  only	
  
by	
  single	
  applica2on	
  or	
  algorithm.	
  
–  If	
  experiments	
  using	
  mul2ple	
  algorithms	
  on	
  the	
  
same	
  graph	
  are	
  conducted,	
  bejer	
  result	
  will	
  gain.	
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8.	
  Conclusion	


•  A	
  Pregel	
  system	
  called	
  Mizan	
  was	
  presented.	
  
–  Iden2fies	
  the	
  cause	
  of	
  workload	
  imbalance.	
  
– Conducts	
  fine-­‐grained	
  vertex	
  migra2on.	
  

•  Performance	
  evalua2on	
  showed	
  it	
  had	
  most	
  
efficiency	
  and	
  robustness.	
  
–  It	
  also	
  showed	
  the	
  linear	
  scalability	
  to	
  hundreds	
  
nodes.	
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Contribu2ons	


•  Analyzed	
  some	
  graph	
  algorithm	
  characteris2cs	
  
that	
  can	
  contribute	
  to	
  imbalanced	
  
computa2on	
  of	
  a	
  Pregel	
  system.	
  

•  Proposed	
  a	
  dynamic	
  migra2on	
  model	
  based	
  
on	
  run2me	
  monitoring	
  of	
  ver2ces.	
  

•  Implemented	
  Mizan	
  in	
  C++	
  and	
  MPI	
  as	
  an	
  
op2mized	
  Pregel	
  system.	
  

•  Deployed	
  Mizan	
  and	
  showed	
  linear	
  scalability.	
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My	
  Impression	
  1	


•  Even	
  Mizan	
  assumes	
  many	
  nodes	
  computa2on,	
  
data	
  sets	
  might	
  not	
  large	
  enough.	
  
– The	
  number	
  of	
  nodes	
  is	
  23	
  million	
  at	
  most.	
  
–  I	
  wanted	
  to	
  see	
  the	
  result	
  of	
  evalua2ons	
  using	
  
billion-­‐scale	
  graph.	
  

–  I	
  think	
  that	
  scalability	
  would	
  be	
  less	
  and	
  less	
  with	
  
using	
  larger	
  network.	
  
•  Migra2on	
  cost	
  would	
  be	
  more	
  visible.	
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My	
  Impression	
  2	


•  It	
  has	
  substan2al	
  analyzing	
  and	
  evalua2ons	
  on	
  
graph	
  algorithms.	
  
– Thought	
  of	
  categories	
  “(Non-­‐)sta2onary	
  
algorithms”	
  seems	
  to	
  be	
  useful.	
  

–  I	
  found	
  that	
  many	
  graph	
  par22oning	
  algorithms	
  
for	
  preprocessing	
  are	
  worth	
  trying.	
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My	
  Impression	
  3	


•  The	
  series	
  of	
  algorithms	
  and	
  implements	
  of	
  
Mizan	
  will	
  serve	
  as	
  a	
  reference	
  of	
  my	
  research.	
  
–  I	
  am	
  researching	
  an	
  efficient	
  traffic	
  simula2ons	
  
using	
  million-­‐scale	
  road	
  network.	
  

– The	
  main	
  problem	
  in	
  these	
  simula2ons	
  is	
  also	
  load	
  
unbalancing	
  caused	
  by	
  vehicles.	
  
• We	
  cannot	
  predict	
  the	
  number	
  of	
  vehicles	
  (messages).	
  

– The	
  idea	
  of	
  “delayed	
  migra2on”	
  can	
  be	
  
implemented	
  to	
  my	
  simula2ons.	
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Thank	
  you	
  for	
  listening	
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