
High	
 Performance	
 Compu2ng	

Paper	
 Review	
 	

Hiroki	
 Kanezashi	

13M38152	

1	

Reviewed	
 Paper	
 1	

“Mizan:	
 A	
 System	
 for	
 Dynamic	
 Load	
 Balancing	
 in	

Large-­‐scale	
 Graph	
 Processing”	

[EuroSys	
 '13	
 Proceedingsof	
 the	
 8th	
 ACM	
 European	

Conference	
 on	
 Computer	
 Systems]	

	

Zuhair	
 Khayyat1	
 	
 Karim	
 Awara1	
 Amani	
 Alonazi1	

Hani	
 Jamjoom2	
 Dan	
 Williams2	
 Panos	
 Kalnis1	
 	

1King	
 Abdullah	
 University	
 of	
 Science	
 and	
 Technology,	
 Saudi	
 Arabia	

2IBM	
 T.	
 J.	
 Watson	
 Research	
 Center,	
 Yorktown	
 Heights,	
 NY	
 	

	

2	

Reviewed	
 Paper	
 2	

“Breaking	
 the	
 Speed	
 and	
 Scalability	
 Barriers	
 for	

Graph	
 Explora2on	
 on	
 Distributed-­‐memory	

Machines”	

[Interna2onal	
 Conference	
 for	
 High	
 Performance	

Compu2ng,	
 Networking,	
 Storage	
 and	
 Analysis	
 (SC),	
 2012]	

	

Fabio	
 Checconi,	
 Fabrizio	
 Petrini1,	

Jeremiah	
 Willcock,	
 Andrew	
 Lumsdaine2,	

Anamitra	
 Roy	
 Choudhury,	
 Yogish	
 Sabharwal3	

1IBM	
 T.	
 J.	
 Watson	
 Research	
 Center,	
 Yorktown	
 Heights,	
 NY	
 10598	

2CREST,	
 Indiana	
 University	
 Bloomington,	
 IN	
 47405	

3IBM	
 India	
 Research,	
 New	
 Delhi,	
 DL	
 110070,	
 India	

	
 3	

Reviewed	
 Paper	
 3	

“Parallel	
 Breadth-­‐First	
 Search	
 on	
 Distributed	

Memory	
 Systems”	

[SC	
 '11	
 Proceedings	
 of	
 2011	
 Interna2onal	
 Conference	

for	
 High	
 Performance	
 Compu2ng,	
 Networking,	
 Storage	

and	
 Analysis]	

	

Aydın	
 Buluç	
 and	
 Kamesh	
 Madduri	

Computa2onal	
 Research	
 Division	
 Lawrence	
 Berkeley	
 Na2onal	
 Laboratory	
 Berkeley,	
 CA	

4	

Outline	

1.  Introduc2on	

2.  Dynamic	
 Behavior	
 of	
 Algorithms	

3.  Mizan	

4.  Implementa2on	

5.  Evalua2on	

6.  Related	
 Work	

7.  Future	
 Work	

8.  Conclusion	

•  My	
 Impressions	

5	

1.	
 Introduc2on	

•  To	
 make	
 bejer	
 use	
 of	
 graph	
 data	
 and	
 mining	

algorithms,	
 many	
 plakorms	
 are	
 proposed.	

– Pregel	

– HADI	

– PEGASUS	

– X-­‐RIME	

•  This	
 paper	
 focused	
 on	
 Pregel.	

6	

About	
 Pregel	

•  Pregel	
 is	
 used	
 for	
 large	
 graph	
 minings	

recently.	

– Message	
 passing-­‐based	

– Performs	
 bejer	
 than	
 MapReduce	

– Built	
 on	
 the	
 Bulk	
 Synchronous	
 Parallel	
 (BSP)	

model	

•  Computa2on	
 is	
 divided	
 into	
 “supersteps”.	

•  These	
 supersteps	
 are	
 separated	
 by	
 global	
 barrier.	

7	

Load	
 balancing	

•  In	
 a	
 Pregel	
 system,	
 balanced	
 computa2on	
 and	

communica2on	
 is	
 fundamental.	

•  Pregel	
 and	
 other	
 implemented	
 plakorms	
 have	

systems	
 to	
 do	
 so.	

– Giraph	

– GoldenOrb	

– Hama	

– Surfer	

8	

Recent	
 Approaches	
 for	
 Balancing	

•  Use	
 hash-­‐	
 /	
 range-­‐based	
 graph	
 par22oning	

•  Entrust	
 developers	
 to	
 use	
 their	
 own	

par22oning	
 scheme	
 or	
 pre-­‐par22on	
 data	

•  Provide	
 sophis2cated	
 techniques	

•  U2lize	
 distributed	
 data	
 stores	
 and	
 indexing	
 on	

ver2ces	
 and	
 edges	

•  Perform	
 coarse-­‐grained	
 load	
 balancing	

9	

The	
 Efficacy	
 of	
 Recent	
 Methods	

•  Are	
 these	
 method	
 effec2ve	
 for	
 large	
 graph?	

– They	
 are	
 sta2c	
 approaches.	

– Developers	
 should	
 predict	
 the	
 behavior.	

– Developers	
 should	
 know	
 run2me	
 characteris2cs.	

10	

2.	
 Dynamic	
 Behavior	
 of	
 Algorithms	

•  There	
 are	
 many	
 factors	

affect	
 the	
 run2me	

performance	
 in	
 Pregel.	

– When	
 ver2ces	
 are	
 ac2ve,	

they	
 compute,	
 send	
 and	

receive	
 messages.	

–  Some	
 messages	
 are	
 sent	
 to	

another	
 workers	
 (nodes).	

•  Some	
 factors	
 can	
 be	

masked	
 by	
 overlapping	
 or	

running	
 many	
 ver2ces.	

11	

All	
 figures	
 and	
 tables	
 are	
 retrived	

from	
 the	
 reviewed	
 paper.	

  


























Figure 1. Factors that can affect the runtime in the Pregel
framework

tioning methods divide a dataset based on a simple heuristic:
to evenly distribute vertices across compute nodes, irrespec-
tive of their edge connectivity. Min-cut based partitioning,
on the other hand, considers vertex connectivity and parti-
tions the data such that it places strongly connected vertices
close to each other (i.e., on the same cluster). The result-
ing performance of these partitioning approaches is, how-
ever, graph dependent. To demonstrate this variability, we
ran a simple—and highly predictable—PageRank algorithm
on different datasets (summarized in Table 1) using the three
popular partitioning methods. Figure 2 shows that none of
the partitioning methods consistently outperforms the rest,
noting that ParMETIS [15] partitioning cannot be performed
on the arabic-2005 graph due to memory limitations.

In addition to the graph structure, the running algorithm
can also affect the workload balance across compute nodes.
Broadly speaking, graph algorithms can be divided into
two categories (based on their communication characteris-
tics across supersteps): stationary and non-stationary.

Stationary Graph Algorithms. An algorithm is stationary
if its active vertices send and receive the same distribution of
messages across supersteps. At the end of a stationary algo-
rithm, all active vertices become inactive (terminate) during
the same superstep. Usually graph algorithms represented by
a matrix-vector multiplication2 are stationary algorithms, in-
cluding PageRank, diameter estimation and finding weakly
connected components.

Non-stationary Graph Algorithms. A graph algorithm is
non-stationary if the destination or size of its outgoing mes-
sages changes across supersteps. Such variations can create
workload imbalances across supersteps. Examples of non-
stationary algorithms include distributed minimal spanning
tree construction (DMST), graph queries, and various simu-
lations on social network graphs (e.g., advertisement propa-
gation).

2 The matrix represents the graph adjacency matrix and the vector represents
the vertices’ value.

Figure 2. The difference in execution time when processing
PageRank on different graphs using hash-based, range-based
and min-cuts partitioning. Because of its size, arabic-2005
cannot be partitioned using min-cuts (ParMETIS) in our
local cluster.

Figure 3. The difference between stationary and non-
stationary graph algorithms with respect to the incoming
messages. Total represents the sum across all workers and
Max represents the maximum amount (on a single worker)
across all workers.

To illustrate the differences between the two classes of
algorithms, we compared the runtime behavior of PageRank
(stationary) against DMST (non-stationary) when process-
ing the same dataset (LiveJournal1) on a cluster of 21 ma-
chines. The input graph was partitioned using a hash func-
tion. Figure 3 shows the variability in the incoming messages
per superstep for all workers. In particular, the variability can
span over five orders of magnitude for non-stationary algo-
rithms.

The remainder of the section describes four popular graph
mining algorithms that we use throughout the paper. They
cover both stationary and non-stationary algorithms.

2.1 Example Algorithms

PageRank. PageRank [24] is a stationary algorithm that
uses matrix-vector multiplications to calculate the eigenval-

���

Workload	
 imbalance	

•  It	
 is	
 difficult	
 to	
 achieve	
 a	
 balanced	
 workload	
 for	

graph	
 structure	
 and	
 algorithms	
 behavior.	

	

•  Some	
 nodes	
 may	
 take	
 a	
 long	
 2me	
 to	
 compute	

many	
 nodes,	
 send	
 and	
 receive	
 many	
 messages.	

	

•  As	
 this	
 paper	
 introduced,	
 many	
 approaches	
 are	

used	
 in	
 Pregel	
 systems.	

12	

Evalua2on	
 of	
 recent	
 methods	

•  At	
 first,	
 three	
 common	

approaches	
 are	

evaluated	
 using	
 these	

datasets.	

–  Hash-­‐based	

–  Range-­‐based	

– Minimum-­‐cuts	

13	

Figure 1. Factors that can affect the runtime in the Pregel
framework

tioning methods divide a dataset based on a simple heuristic:
to evenly distribute vertices across compute nodes, irrespec-
tive of their edge connectivity. Min-cut based partitioning,
on the other hand, considers vertex connectivity and parti-
tions the data such that it places strongly connected vertices
close to each other (i.e., on the same cluster). The result-
ing performance of these partitioning approaches is, how-
ever, graph dependent. To demonstrate this variability, we
ran a simple—and highly predictable—PageRank algorithm
on different datasets (summarized in Table 1) using the three
popular partitioning methods. Figure 2 shows that none of
the partitioning methods consistently outperforms the rest,
noting that ParMETIS [15] partitioning cannot be performed
on the arabic-2005 graph due to memory limitations.

In addition to the graph structure, the running algorithm
can also affect the workload balance across compute nodes.
Broadly speaking, graph algorithms can be divided into
two categories (based on their communication characteris-
tics across supersteps): stationary and non-stationary.

Stationary Graph Algorithms. An algorithm is stationary
if its active vertices send and receive the same distribution of
messages across supersteps. At the end of a stationary algo-
rithm, all active vertices become inactive (terminate) during
the same superstep. Usually graph algorithms represented by
a matrix-vector multiplication2 are stationary algorithms, in-
cluding PageRank, diameter estimation and finding weakly
connected components.

Non-stationary Graph Algorithms. A graph algorithm is
non-stationary if the destination or size of its outgoing mes-
sages changes across supersteps. Such variations can create
workload imbalances across supersteps. Examples of non-
stationary algorithms include distributed minimal spanning
tree construction (DMST), graph queries, and various simu-
lations on social network graphs (e.g., advertisement propa-
gation).

2 The matrix represents the graph adjacency matrix and the vector represents
the vertices’ value.




































Figure 2. The difference in execution time when processing
PageRank on different graphs using hash-based, range-based
and min-cuts partitioning. Because of its size, arabic-2005
cannot be partitioned using min-cuts (ParMETIS) in our
local cluster.

Figure 3. The difference between stationary and non-
stationary graph algorithms with respect to the incoming
messages. Total represents the sum across all workers and
Max represents the maximum amount (on a single worker)
across all workers.

To illustrate the differences between the two classes of
algorithms, we compared the runtime behavior of PageRank
(stationary) against DMST (non-stationary) when process-
ing the same dataset (LiveJournal1) on a cluster of 21 ma-
chines. The input graph was partitioned using a hash func-
tion. Figure 3 shows the variability in the incoming messages
per superstep for all workers. In particular, the variability can
span over five orders of magnitude for non-stationary algo-
rithms.

The remainder of the section describes four popular graph
mining algorithms that we use throughout the paper. They
cover both stationary and non-stationary algorithms.

2.1 Example Algorithms

PageRank. PageRank [24] is a stationary algorithm that
uses matrix-vector multiplications to calculate the eigenval-

���

Figure 10. Delayed vertex migration

G(N,E) |N | |E|
kg1 1,048,576 5,360,368
kg4m68m 4,194,304 68,671,566
web-Google 875,713 5,105,039
LiveJournal1 4,847,571 68,993,773
hollywood-2011 2,180,759 228,985,632
arabic-2005 22,744,080 639,999,458

Table 1. Datasets—N , E denote nodes and edges, respec-
tively. Graphs with prefix kg are synthetic.

ning is disabled for superstep SS

t+1 after applying delayed
migration to ensure the consistency of the migration plans.

An example is shown in Figure 10, where Vertex 7 is
migrated using delayed migration. As Vertex 7 migrates,
the ownership of Vertex 7 is moved to Worker new and
messages sent to Vertex 7 at SS

t+1 are addressed to
Worker new. At the barrier of SS

t+1, Worker old sends
the edge information and state of v to Worker new and starts
SS

t+2 with v fully migrated to Worker new.
With delayed migration, the consistency of computation

is maintained without introducing additional network cost
for vertices with large message queues. Since delayed mi-
gration uses two supersteps to complete, Mizan may need
more steps before it converges on a balanced state.

5. Evaluation
We implemented Mizan using C++ and MPI and compared
it against Giraph [8], a Pregel clone implemented in Java
on top of Hadoop. We ran our experiments on a local clus-
ter of 21 machines equipped with a mix of i5 and i7 pro-
cessors with 16GB RAM on each machine. We also used
an IBM Blue Gene/P supercomputer with 1024 PowerPC-
450 CPUs, each with 4 cores at 850MHz and 4GB RAM.
We downloaded publicly available datasets from the Stan-
ford Network Analysis Project6 and from The Laboratory for

6
http://snap.stanford.edu

Figure 11. Comparing Static Mizan vs. Giraph using
PageRank on social network and random graphs

Web Algorithmics (LAW) [2, 20]. We also generated syn-
thetic datasets using the Kronecker [21] generator that mod-
els the structure of real life networks. The details are shown
in Table 1.

To better isolate the effects of dynamic migration on
system performance, we implemented three variations of
Mizan: Static, Work Stealing (WS), and Mizan. Static Mizan
disables any dynamic migration and uses either hash-based,
range-based or min-cuts graph pre-partitioning (rendering
it similar to Giraph). Work Stealing (WS) Mizan is our
attempt to emulate Pregel’s coarse-grained dynamic load
balancing behavior (described in [23]). Finally, Mizan is our
framework that supports dynamic migration as described in
Sections 3 and 4.

We evaluated Mizan across three dimensions: partitioning
scheme, graph structure, and algorithm behavior. We par-
tition the datasets using three schemes: hash-based, range-
based, and METIS partitioning. We run our experiments
against both social and random graphs. Finally, we experi-
mented with the algorithms described in Section 2.1.

5.1 Giraph vs. Mizan
We picked Giraph for its popularity as an open source Pregel
framework with broad adoption. We only compared Giraph
to Static Mizan, which allows us to evaluate our base (non-
dynamic) implementation. Mizan’s dynamic migration is
evaluated later in this section. To further equalize Giraph and
the Static Mizan, we disabled the fault tolerance feature of
Giraph to eliminate any additional overhead resulting from
frequent snapshots during runtime. In this section, we report
the results using PageRank (a stationary and well balanced
algorithm) using different graph structures.

In Figure 11, we ran both frameworks on social network
and random graphs. As shown, Static Mizan outperforms Gi-
raph by a large margin, up to four times faster than Giraph in
kg4m68, which contains around 70M edges. We also com-
pared both systems when increasing the number of nodes
in random structure graphs. As shown in Figure 12, Static

���

Categolize	
 Graph	
 Algorithms	

•  Not	
 only	
 graph	
 structure,	
 but	
 also	
 graph	

algorithms	
 can	
 affect	
 the	
 workload	
 balance.	
 	

•  They	
 can	
 be	
 categolized	
 according	
 to	

communica2on	
 characteris2cs.	

– Sta2onary	

– Non-­‐sta2onary	

14	

Categolize	
 Graph	
 Algorithms	

Sta$onary	

•  Distribu2ons	
 of	
 sent	

messages	
 do	
 not	
 change.	

•  Example	

–  PageRank	

–  Diameter	
 es2ma2on	

–  Finding	
 weakly	
 connected	

components	

Non-­‐Sta$onary	

•  Des2na2ons	
 or	
 sizes	
 of	

messages	
 can	
 change.	

•  Example	

–  Distributed	
 minimal	
 spanning	

tree	
 construc2on	
 (DMST)	

–  Graph	
 queries	

–  Simula2ons	
 on	
 social	
 network	

graphs	

15	

Categolize	
 Graph	
 Algorithms	

16	

•  While	
 running	
 two	

algorithms	
 in	
 21	
 nodes,	

Non-­‐sta2onary	

algorithms	
 (DMST)	
 sent	

more	
 and	
 more	

messages.	

Figure 1. Factors that can affect the runtime in the Pregel
framework

tioning methods divide a dataset based on a simple heuristic:
to evenly distribute vertices across compute nodes, irrespec-
tive of their edge connectivity. Min-cut based partitioning,
on the other hand, considers vertex connectivity and parti-
tions the data such that it places strongly connected vertices
close to each other (i.e., on the same cluster). The result-
ing performance of these partitioning approaches is, how-
ever, graph dependent. To demonstrate this variability, we
ran a simple—and highly predictable—PageRank algorithm
on different datasets (summarized in Table 1) using the three
popular partitioning methods. Figure 2 shows that none of
the partitioning methods consistently outperforms the rest,
noting that ParMETIS [15] partitioning cannot be performed
on the arabic-2005 graph due to memory limitations.

In addition to the graph structure, the running algorithm
can also affect the workload balance across compute nodes.
Broadly speaking, graph algorithms can be divided into
two categories (based on their communication characteris-
tics across supersteps): stationary and non-stationary.

Stationary Graph Algorithms. An algorithm is stationary
if its active vertices send and receive the same distribution of
messages across supersteps. At the end of a stationary algo-
rithm, all active vertices become inactive (terminate) during
the same superstep. Usually graph algorithms represented by
a matrix-vector multiplication2 are stationary algorithms, in-
cluding PageRank, diameter estimation and finding weakly
connected components.

Non-stationary Graph Algorithms. A graph algorithm is
non-stationary if the destination or size of its outgoing mes-
sages changes across supersteps. Such variations can create
workload imbalances across supersteps. Examples of non-
stationary algorithms include distributed minimal spanning
tree construction (DMST), graph queries, and various simu-
lations on social network graphs (e.g., advertisement propa-
gation).

2 The matrix represents the graph adjacency matrix and the vector represents
the vertices’ value.

Figure 2. The difference in execution time when processing
PageRank on different graphs using hash-based, range-based
and min-cuts partitioning. Because of its size, arabic-2005
cannot be partitioned using min-cuts (ParMETIS) in our
local cluster.











      























Figure 3. The difference between stationary and non-
stationary graph algorithms with respect to the incoming
messages. Total represents the sum across all workers and
Max represents the maximum amount (on a single worker)
across all workers.

To illustrate the differences between the two classes of
algorithms, we compared the runtime behavior of PageRank
(stationary) against DMST (non-stationary) when process-
ing the same dataset (LiveJournal1) on a cluster of 21 ma-
chines. The input graph was partitioned using a hash func-
tion. Figure 3 shows the variability in the incoming messages
per superstep for all workers. In particular, the variability can
span over five orders of magnitude for non-stationary algo-
rithms.

The remainder of the section describes four popular graph
mining algorithms that we use throughout the paper. They
cover both stationary and non-stationary algorithms.

2.1 Example Algorithms

PageRank. PageRank [24] is a stationary algorithm that
uses matrix-vector multiplications to calculate the eigenval-

���

3.	
 Mizan	

•  Common	
 point	
 with	
 Pregel	

– A	
 BSP-­‐based	
 graph	
 processing	
 system	

– Reads	
 graph	
 and	
 par22on	
 before	
 supersteps	

•  Different	
 point	
 with	
 Pregel	

– Focuses	
 on	
 efficient	
 dynamic	
 load	
 balancing	
 of	

both	
 computa2on	
 and	
 communica2on	

– Moves	
 some	
 ver2ces	
 across	
 workers	
 (migra2on)	

•  Distributed	
 run2me	
 monitoring	

•  Distributed	
 migra2on	
 planner	
 	

17	

Monitoring	

•  Mizan	
 system	
 monitors	
 three	
 metrics	

– The	
 number	
 of	
 outgoing	
 messages	

•  Counts	
 messages	
 to	
 other	
 ver2ces	
 in	
 remote	
 workers.	

•  Local	
 outgoing	
 ones	
 never	
 affect	
 network	
 cost.	

– The	
 number	
 of	
 total	
 incoming	
 messages	

•  Counts	
 ones	
 from	
 remote	
 ver2ces	
 and	
 locally	
 generated.	

– The	
 response	
 2me	
 (execu2on	
 2me)	

•  Measured	
 for	
 each	
 vertex	
 at	
 each	
 superstep.	

18	

Monitoring	























Figure 4. The statistics monitored by Mizan

Figure 5. Mizan’s BSP flow with migration planning

the response time (execution time) during the current super-
step:

Outgoing Messages. Only outgoing messages to other ver-
tices in remote workers are counted since the local outgoing
messages are rerouted to the same worker and do not incur
any actual network cost.

Incoming Messages. All incoming messages are monitored,
those that are received from remote vertices and those lo-
cally generated. This is because queue size can affect the
performance of the vertex (i.e., when its buffer capacity is
exhausted, paging to disk is required).

Response Time. The response time for each vertex is mea-
sured. It is the time when a vertex starts processing its in-
coming messages until it finishes.

3.2 Migration Planning
High values for any of the three metrics above may indicate
poor vertex placement, which leads to workload imbalance.
As with many constrained optimization problems, optimiz-
ing against three objectives is non-trivial. To reduce the op-
timization search space, Mizan’s migration planner finds the
strongest cause of workload imbalance among the three met-
rics and plans the vertex migration accordingly.

By design, all workers create and execute the migration
plan in parallel, without requiring any centralized coordina-
tion. The migration planner starts on every worker at the end
of each superstep (i.e., when all workers reach the synchro-
nization barrier), after it receives summary statistics (as de-
scribed in Section 3.1) from all other workers. Additionally,
the execution of the migration planner is sandwiched be-

Figure 6. Summary of Mizan’s Migration Planner

tween a second synchronization barrier as shown in Figure 5,
which is necessary to ensure correctness of the BSP model.
Mizan’s migration planner executes the following five steps,
summarized in Figure 6:

1. Identify the source of imbalance.

2. Select the migration objective (i.e., optimize for outgoing
messages, incoming messages, or response time).

3. Pair over-utilized workers with under-utilized ones.

4. Select vertices to migrate.

5. Migrate vertices.

STEP 1: Identify the source of imbalance. Mizan detects
imbalances across supersteps by comparing the summary
statistics of all workers against a normal random distribu-
tion and flagging outliers. Specifically, at the end of a su-
perstep, Mizan computes the z-score4 for all workers. If
any worker has z-score greater than z

def

, Mizan’s migra-
tion planner flags the superstep as imbalanced. We found that
z

def

= 1.96, the commonly recommend value [26], allows
for natural workload fluctuations across workers. We have
experimented with different values of z

def

and validated the
robustness of our choice.

STEP 2: Select the migration objective. Each worker—
identically—uses the summary statistics to compute the cor-
relation between outgoing messages and response time, and
also the correlation between incoming messages and re-
sponse time. The correlation scores are used to select the
objective to optimize for: to balance outgoing messages,
balance incoming messages, or balance computation time.
The default objective is to balance the response time. If the

4 The z-score Wz

i

= |x
i

�x

max

|
standard deviation

, where x

i

is the run time of
worker i

���

19	

Migra2on	
 Planning	

1.  Iden2fy	
 the	
 source	
 of	

imbalance.	

2.  Select	
 the	
 migra2on	

objec2ve.	

3.  Pair	
 over-­‐u2lized	
 and	

under-­‐u2lized	
 workers.	

4.  Select	
 ver2ces	
 to	

migrate.	

5.  Migrate	
 ver2ces.	

Figure 4. The statistics monitored by Mizan

Figure 5. Mizan’s BSP flow with migration planning

the response time (execution time) during the current super-
step:

Outgoing Messages. Only outgoing messages to other ver-
tices in remote workers are counted since the local outgoing
messages are rerouted to the same worker and do not incur
any actual network cost.

Incoming Messages. All incoming messages are monitored,
those that are received from remote vertices and those lo-
cally generated. This is because queue size can affect the
performance of the vertex (i.e., when its buffer capacity is
exhausted, paging to disk is required).

Response Time. The response time for each vertex is mea-
sured. It is the time when a vertex starts processing its in-
coming messages until it finishes.

3.2 Migration Planning
High values for any of the three metrics above may indicate
poor vertex placement, which leads to workload imbalance.
As with many constrained optimization problems, optimiz-
ing against three objectives is non-trivial. To reduce the op-
timization search space, Mizan’s migration planner finds the
strongest cause of workload imbalance among the three met-
rics and plans the vertex migration accordingly.

By design, all workers create and execute the migration
plan in parallel, without requiring any centralized coordina-
tion. The migration planner starts on every worker at the end
of each superstep (i.e., when all workers reach the synchro-
nization barrier), after it receives summary statistics (as de-
scribed in Section 3.1) from all other workers. Additionally,
the execution of the migration planner is sandwiched be-







 

























Figure 6. Summary of Mizan’s Migration Planner

tween a second synchronization barrier as shown in Figure 5,
which is necessary to ensure correctness of the BSP model.
Mizan’s migration planner executes the following five steps,
summarized in Figure 6:

1. Identify the source of imbalance.

2. Select the migration objective (i.e., optimize for outgoing
messages, incoming messages, or response time).

3. Pair over-utilized workers with under-utilized ones.

4. Select vertices to migrate.

5. Migrate vertices.

STEP 1: Identify the source of imbalance. Mizan detects
imbalances across supersteps by comparing the summary
statistics of all workers against a normal random distribu-
tion and flagging outliers. Specifically, at the end of a su-
perstep, Mizan computes the z-score4 for all workers. If
any worker has z-score greater than z

def

, Mizan’s migra-
tion planner flags the superstep as imbalanced. We found that
z

def

= 1.96, the commonly recommend value [26], allows
for natural workload fluctuations across workers. We have
experimented with different values of z

def

and validated the
robustness of our choice.

STEP 2: Select the migration objective. Each worker—
identically—uses the summary statistics to compute the cor-
relation between outgoing messages and response time, and
also the correlation between incoming messages and re-
sponse time. The correlation scores are used to select the
objective to optimize for: to balance outgoing messages,
balance incoming messages, or balance computation time.
The default objective is to balance the response time. If the

4 The z-score Wz

i

= |x
i

�x

max

|
standard deviation

, where x

i

is the run time of
worker i

���

20	

Detec2ng	
 Imbalance	

1.  Check	
 outlier	
 workers	
 comparing	
 the	

summary	
 sta2s2cs	
 of	
 all	
 ones.	

2.  Select	
 the	
 objec2ve	
 what	
 it	
 will	
 op2mize	
 with	

calcula2ng	
 correla2on	
 of	
 the	
 metrics.	

–  To	
 balance	
 outgoing	
 messages	

–  To	
 balance	
 incoming	
 messages	

–  To	
 balance	
 computa2on	
 2me	
 (default)	

21	

Selec2ng	
 Ver2ces	

3.  Pair	
 workers	
 by	
 metrics.	

–  If	
 there	
 are	
 n	
 workers,	

	
 	
 top	
 n	
 and	
 n-­‐i	
 	
 workers	
 should	
 be	
 pair.	

–  Workers	
 without	
 enough	
 memory	
 are	
 unavailable.	

4.  Select	
 ver2ces	
 to	
 move	
 in	
 order	
 to	
 minimize	

the	
 difference	
 of	
 sum	
 of	
 workloads	
 to	
 be	

migrated	
 and	
 sum	
 of	
 those	
 outliers.	

22	

outgoing or incoming messages are highly correlated with
the response time, then Mizan chooses the objective with
highest correlation score. The computation of the correlation
score is described in Appendix A.

STEP 3: Pair over-utilized workers with under-utilized
ones. Each overutilized worker that needs to migrate ver-
tices out is paired with a single underutilized worker. While
complex pairings are possible, we choose a design that is ef-
ficient to execute, especially since the exact number of ver-
tices that different workers plan to migrate is not globally
known. Similar to the previous two steps in the migration
plan, this step is executed by each worker without explicit
global synchronization. Using the summary statistics for the
chosen migration objective (in Step 2), each worker creates
an ordered list of all workers. For example, if the objective is
to balance outgoing messages, then the list will order work-
ers from highest to lowest outgoing messages. The resulting
list, thus, places overutilized workers at the top and least uti-
lized workers at the bottom. The pairing function then suc-
cessively matches workers from opposite ends of the ordered
list. As depicted in Figure 7, if the list contains n elements
(one for each worker), then the worker at position i is paired
with the worker at position n � i. In cases where a worker
does not have memory to receive any vertices, the worker is
marked unavailable in the list.

STEP 4: Select vertices to migrate. The number of vertices
to be selected from an overutilized worker depends on the
difference of the selected migration objective statistics with
its paired worker. Assume that w

x

is a worker that needs
to migrate out a number of vertices, and is paired with the
receiver, w

y

. The load that should be migrated to the under-
utilized worker is defined as �

xy

, which equals to half the
difference in statistics of the migration objective between the
two workers. The selection criteria of the vertices depends
on the distribution of the statistics of the migration objective,
where the statistics of each vertex is compared against a nor-
mal distribution. A vertex is selected if it is an outlier (i.e.,
if its V z

i

stat

5). For example, if the migrating objective is to
balance the number of remote outgoing messages, vertices
with large remote outgoing messages are selected to migrate
to the underutilized worker. The sum of the statistics of the
selected vertices is denoted by

P
V

stat

which should mini-
mize |�

xy

�
P

V

stat

| to ensure the balance between w

x

and
w

y

in the next superstep. If there not enough outlier vertices
are found, a random set of vertices are selected to minimize
|�

xy

�
P

V

stat

|.
STEP 5: Migrate vertices. After the vertex selection pro-
cess, the migrating workers start sending the selected ver-
tices while other workers wait at the migration barrier. A
migrating worker starts sending the selected set of vertices
to its unique target worker, where each vertex is encoded

5 The z-score V z

i

stat

=
|x

i

�x

avg

|
standard deviation

, where x

i

is the statistics of
the migration objective of vertex i is greater than the z

def

        

        



Figure 7. Matching senders (workers with vertices to mi-
grate) with receivers using their summary statistics

into a stream that includes the vertex ID, state, edge informa-
tion and the received messages it will process. Once a ver-
tex stream is successfully sent, the sending worker deletes
the sent vertices so that it does not run them in the next su-
perstep. The receiving worker, on the other hand, receives
vertices (together with their messages) and prepares to run
them in the next superstep. The next superstep is started once
all workers finish migrating vertices and reach the migration
barrier. The complexity of the migration process is directly
related to the size of vertices being migrated.

4. Implementation
Mizan consists of four modules, shown in Figure 8: the
BSP Processor, Storage Manager, Communicator, and Mi-
gration Planner. The BSP Processor implements the Pregel
APIs, consisting primarily of the Compute class, and the
SendMessageTo, GetOutEdgeIterator and getValue

methods. The BSP Processor operates on the data struc-
tures of the graph and executes the user’s algorithm. It also
performs barrier synchronization with other workers at the
end of each superstep. The Storage Manager module main-
tains access atomicity and correctness of the graph’s data,
and maintains the data structures for message queues. Graph
data can be read and written to either HDFS or local disks,
depending on how Mizan is deployed. The Communicator
module uses MPI to enable communication between work-
ers; it also maintains distributed vertex ownership informa-
tion. Finally, the Migration Planner operates transparently
across superstep barriers to maintain the dynamic workload
balance.

Mizan allows the user’s code to manipulate the graph con-
nectivity by adding and removing vertices and edges at any
superstep. It also guarantees that all graph mutation com-
mands issued at superstep

x

are executed at the end of the
same superstep and before the BSP barrier, which is illus-
trated in Figure 5. Therefore, vertex migrations performed
by Mizan do not conflict with the user’s graph mutations and
Mizan always considers the most recent graph structure for
migration planning.

When implementing Mizan, we wanted to avoid having a
centralized controller. Overall, the BSP (Pregel) model nat-
urally lends itself to a decentralized implementation. There
were, however, three key challenges in implementing a dis-
tributed control plane that supports fine-grained vertex mi-
gration. The first challenge was in maintaining vertex own-
ership so that vertices can be freely migrated across work-

���

Migra2ng	
 Ver2ces	

5.  To	
 migrate	
 ver2ces,	
 each	
 worker	
 will	
 do	
 that	

in	
 the	
 migra2on	
 barrier:	

–  Sending	
 worker	

•  Sends	
 encoded	
 stream	
 with	
 vertex	
 ID,	
 state,	
 edge	

informa2on	
 and	
 received	
 messages.	

•  Ater	
 the	
 stream	
 is	
 sent,	
 deletes	
 the	
 ver2ces.	

–  Receiving	
 worker	

•  Receives	
 ver2ces	
 and	
 messages.	

•  Prepares	
 to	
 run	
 them	
 in	
 the	
 next	
 superstep.	

23	

4.	
 Implementa2on	

•  In	
 Mizan,	
 each	
 worker	

has	
 4	
 modules	

–  BSP	
 Processor	

•  Implemented	
 Pregel	
 APIs	

–  Storage	
 Manager	

•  Maintains	
 the	
 graph	
 data	

always	
 correct	

–  Communicator	

•  Uses	
 MPI	
 to	
 communicate	

with	
 other	
 workers	
 	

– Migra2on	
 Planner	

•  Operate	
 across	
 barriers	


















Figure 8. Architecture of Mizan

ers. This is different from existing approaches (e.g., Pregel,
Giraph, and GoldenOrb), which operate on a much coarser
granularity (clusters of vertices) to enable scalability. The
second challenge was in allowing fast updates to the vertex
ownership information as vertices get migrated. The third
challenge was in minimizing the cost of migrating vertices
with large data structures. In this section, we discuss the im-
plementation details around these three challenges, which al-
low Mizan to achieve its effectiveness and scalability.

4.1 Vertex Ownership
With huge datasets, Mizan workers cannot maintain the
management information for all vertices in the graph. Man-
agement information includes the collected statistics for
each vertex (described in Section 3.1) and the location (own-
ership) of each vertex. While per-vertex monitoring statis-
tics are only used locally by the worker, vertex ownership
information is needed by all workers. When vertices send
messages, workers need to know the destination address for
each message. With frequent vertex migration, updating the
location of the vertices across all workers can easily create a
communication bottleneck.

To overcome this challenge, we use a distributed hash ta-
ble (DHT) [1] to implement a distributed lookup service. The
DHT implementation allows Mizan to distribute the over-
head of looking up and updating vertex location across all
workers. The DHT stores a set of (key,value) pairs, where
the key represents a vertex ID and the value represents its
current physical location. Each vertex is assigned a home
worker. The role of the home worker is to maintain the
current location of the vertex. A vertex can physically ex-
ist in any worker, including its home worker. The DHT
uses a globally defined hash function that maps the keys to
their associated home workers, such that home worker =

location hash(key).
During a superstep, when a (source) vertex sends a mes-

sage to another (target) vertex, the message is passed to the
Communicator. If the target vertex is located on the same
worker, it is rerouted back to the appropriate queue. Other-
wise, the source worker uses the location hash function
to locate and query the home worker for the target vertex.
The home worker responds back with the actual physical lo-

Figure 9. Migrating vertex v

i

from Worker 1 to Worker 2,
while updating its DHT home worker (Worker 3)

cation of target vertex. The source worker finally sends the
queued message to the current worker for the target vertex. It
also caches the physical location to minimize future lookups.

4.2 DHT Updates After Vertex Migration
Figure 9 depicts the vertex migration process. When a vertex
v migrates between two workers, the receiving worker sends
the new location of v to the home worker of v. The home
worker, in turn, sends an update message to all workers that
have previously asked for—and, thus, potentially cached—
the location of v. Since Mizan migrates vertices in the barrier
between two supersteps, all workers that have cached the
location of the migrating vertex will receive the updated
physical location from the home worker before the start of
the new superstep.

If for any reason a worker did not receive the updated
location, the messages will be sent to the last known phys-
ical location of v. The receiving worker, which no longer
owns the vertex, will simply buffer the incorrectly routed
messages, ask for the new location for v, and reroute the
messages to the correct worker.

4.3 Migrating Vertices with Large Message Size
Migrating a vertex to another worker requires moving its
queued messages and its entire state (which includes its
ID, value, and neighbors). Especially when processing large
graphs, a vertex can have a significant number of queued
messages, which are costly to migrate. To minimize the cost,
Mizan migrates large vertices using a delayed migration
process that spreads the migration over two supersteps. In-
stead of physically moving the vertex with its large message
queue, delayed migration only moves the vertex’s informa-
tion and the ownership to the new worker. Assuming w

old

is
the old owner and w

new

is the new one, w
old

continues to
process the migrating vertex v in the next superstep, SS

t+1.
w

new

receives the messages for v, which will be processed
at the following superstep, SS

t+2. At the end of SS
t+1, w

old

sends the new value of v, calculated at SS
t+1, to w

new

and
completes the delayed migration. Note that migration plan-

���

24	

Vertex	
 Ownership	

•  Mizan	
 will	
 not	
 maintain	
 centralized	
 vertex	

management	
 especially	
 with	
 huge	
 one.	

•  A	
 distributed	
 hash	
 table	
 (DHT)	
 is	
 used	
 to	

implement	
 a	
 distributed	
 lookup	
 service.	

–  It	
 stores	
 key	
 (ID)	
 and	
 value	
 (physical	
 loca2on)	
 sets.	

– A	
 “home”	
 worker	
 maintains	
 current	
 loca2on	
 of	

assigned	
 ver2ces.	

25	

Distributed	
 Hash	
 Table	
 Updates	

•  Vertex	
 whose	
 home	

worker	
 is	
 3	
 will	
 migrate	

from	
 Worker	
 1	
 to	
 2.	

1.  The	
 vertex	
 migrates.	

2.  Des2na2on	
 worker	

inform	
 migra2on	
 to	

home	
 worker.	

3.  The	
 home	
 worker	

updates	
 DHTs.	

Figure 8. Architecture of Mizan

ers. This is different from existing approaches (e.g., Pregel,
Giraph, and GoldenOrb), which operate on a much coarser
granularity (clusters of vertices) to enable scalability. The
second challenge was in allowing fast updates to the vertex
ownership information as vertices get migrated. The third
challenge was in minimizing the cost of migrating vertices
with large data structures. In this section, we discuss the im-
plementation details around these three challenges, which al-
low Mizan to achieve its effectiveness and scalability.

4.1 Vertex Ownership
With huge datasets, Mizan workers cannot maintain the
management information for all vertices in the graph. Man-
agement information includes the collected statistics for
each vertex (described in Section 3.1) and the location (own-
ership) of each vertex. While per-vertex monitoring statis-
tics are only used locally by the worker, vertex ownership
information is needed by all workers. When vertices send
messages, workers need to know the destination address for
each message. With frequent vertex migration, updating the
location of the vertices across all workers can easily create a
communication bottleneck.

To overcome this challenge, we use a distributed hash ta-
ble (DHT) [1] to implement a distributed lookup service. The
DHT implementation allows Mizan to distribute the over-
head of looking up and updating vertex location across all
workers. The DHT stores a set of (key,value) pairs, where
the key represents a vertex ID and the value represents its
current physical location. Each vertex is assigned a home
worker. The role of the home worker is to maintain the
current location of the vertex. A vertex can physically ex-
ist in any worker, including its home worker. The DHT
uses a globally defined hash function that maps the keys to
their associated home workers, such that home worker =

location hash(key).
During a superstep, when a (source) vertex sends a mes-

sage to another (target) vertex, the message is passed to the
Communicator. If the target vertex is located on the same
worker, it is rerouted back to the appropriate queue. Other-
wise, the source worker uses the location hash function
to locate and query the home worker for the target vertex.
The home worker responds back with the actual physical lo-


















 






























Figure 9. Migrating vertex v

i

from Worker 1 to Worker 2,
while updating its DHT home worker (Worker 3)

cation of target vertex. The source worker finally sends the
queued message to the current worker for the target vertex. It
also caches the physical location to minimize future lookups.

4.2 DHT Updates After Vertex Migration
Figure 9 depicts the vertex migration process. When a vertex
v migrates between two workers, the receiving worker sends
the new location of v to the home worker of v. The home
worker, in turn, sends an update message to all workers that
have previously asked for—and, thus, potentially cached—
the location of v. Since Mizan migrates vertices in the barrier
between two supersteps, all workers that have cached the
location of the migrating vertex will receive the updated
physical location from the home worker before the start of
the new superstep.

If for any reason a worker did not receive the updated
location, the messages will be sent to the last known phys-
ical location of v. The receiving worker, which no longer
owns the vertex, will simply buffer the incorrectly routed
messages, ask for the new location for v, and reroute the
messages to the correct worker.

4.3 Migrating Vertices with Large Message Size
Migrating a vertex to another worker requires moving its
queued messages and its entire state (which includes its
ID, value, and neighbors). Especially when processing large
graphs, a vertex can have a significant number of queued
messages, which are costly to migrate. To minimize the cost,
Mizan migrates large vertices using a delayed migration
process that spreads the migration over two supersteps. In-
stead of physically moving the vertex with its large message
queue, delayed migration only moves the vertex’s informa-
tion and the ownership to the new worker. Assuming w

old

is
the old owner and w

new

is the new one, w
old

continues to
process the migrating vertex v in the next superstep, SS

t+1.
w

new

receives the messages for v, which will be processed
at the following superstep, SS

t+2. At the end of SS
t+1, w

old

sends the new value of v, calculated at SS
t+1, to w

new

and
completes the delayed migration. Note that migration plan-

���

26	

Migra2ng	
 Large	
 Ver2ces	

•  If	
 a	
 vertex	
 has	
 many	
 messages,	
 it	
 costs	
 very	

much	
 when	
 it	
 migrates.	

•  Mizan	
 uses	
 a	
 delayed	
 migra2on	
 process.	

–  It	
 takes	
 two	
 supersteps.	

– Only	
 moves	
 the	
 vertex’s	
 informa2on	
 and	
 the	

ownership,	
 not	
 large	
 message	
 informa2on.	

27	

Delayed	
 Migra2on	

1.  An	
 ownership	
 of	
 the	

migrated	
 vertex	
 is	

moved	
 to	
 Worker_new.	

–  Messages	
 will	
 be	
 sent	
 to	

Worker_new.	

2.  Worker_old	
 sends	
 the	

edge	
 informa2on.	

3.  The	
 vertex	
 is	
 fully	

migrated.	









 











 













 



  



 

 



Figure 10. Delayed vertex migration

G(N,E) |N | |E|
kg1 1,048,576 5,360,368
kg4m68m 4,194,304 68,671,566
web-Google 875,713 5,105,039
LiveJournal1 4,847,571 68,993,773
hollywood-2011 2,180,759 228,985,632
arabic-2005 22,744,080 639,999,458

Table 1. Datasets—N , E denote nodes and edges, respec-
tively. Graphs with prefix kg are synthetic.

ning is disabled for superstep SS

t+1 after applying delayed
migration to ensure the consistency of the migration plans.

An example is shown in Figure 10, where Vertex 7 is
migrated using delayed migration. As Vertex 7 migrates,
the ownership of Vertex 7 is moved to Worker new and
messages sent to Vertex 7 at SS

t+1 are addressed to
Worker new. At the barrier of SS

t+1, Worker old sends
the edge information and state of v to Worker new and starts
SS

t+2 with v fully migrated to Worker new.
With delayed migration, the consistency of computation

is maintained without introducing additional network cost
for vertices with large message queues. Since delayed mi-
gration uses two supersteps to complete, Mizan may need
more steps before it converges on a balanced state.

5. Evaluation
We implemented Mizan using C++ and MPI and compared
it against Giraph [8], a Pregel clone implemented in Java
on top of Hadoop. We ran our experiments on a local clus-
ter of 21 machines equipped with a mix of i5 and i7 pro-
cessors with 16GB RAM on each machine. We also used
an IBM Blue Gene/P supercomputer with 1024 PowerPC-
450 CPUs, each with 4 cores at 850MHz and 4GB RAM.
We downloaded publicly available datasets from the Stan-
ford Network Analysis Project6 and from The Laboratory for

6
http://snap.stanford.edu

Figure 11. Comparing Static Mizan vs. Giraph using
PageRank on social network and random graphs

Web Algorithmics (LAW) [2, 20]. We also generated syn-
thetic datasets using the Kronecker [21] generator that mod-
els the structure of real life networks. The details are shown
in Table 1.

To better isolate the effects of dynamic migration on
system performance, we implemented three variations of
Mizan: Static, Work Stealing (WS), and Mizan. Static Mizan
disables any dynamic migration and uses either hash-based,
range-based or min-cuts graph pre-partitioning (rendering
it similar to Giraph). Work Stealing (WS) Mizan is our
attempt to emulate Pregel’s coarse-grained dynamic load
balancing behavior (described in [23]). Finally, Mizan is our
framework that supports dynamic migration as described in
Sections 3 and 4.

We evaluated Mizan across three dimensions: partitioning
scheme, graph structure, and algorithm behavior. We par-
tition the datasets using three schemes: hash-based, range-
based, and METIS partitioning. We run our experiments
against both social and random graphs. Finally, we experi-
mented with the algorithms described in Section 2.1.

5.1 Giraph vs. Mizan
We picked Giraph for its popularity as an open source Pregel
framework with broad adoption. We only compared Giraph
to Static Mizan, which allows us to evaluate our base (non-
dynamic) implementation. Mizan’s dynamic migration is
evaluated later in this section. To further equalize Giraph and
the Static Mizan, we disabled the fault tolerance feature of
Giraph to eliminate any additional overhead resulting from
frequent snapshots during runtime. In this section, we report
the results using PageRank (a stationary and well balanced
algorithm) using different graph structures.

In Figure 11, we ran both frameworks on social network
and random graphs. As shown, Static Mizan outperforms Gi-
raph by a large margin, up to four times faster than Giraph in
kg4m68, which contains around 70M edges. We also com-
pared both systems when increasing the number of nodes
in random structure graphs. As shown in Figure 12, Static

���

28	

5.	
 Evalua2on	

•  Mizan	
 was	
 implemented	

using	
 C++	
 and	
 MPI.	

–  Compared	
 against	
 Giraph	

(Java	
 based	
 Plegel	
 clone)	

•  Computa2on	
 nodes	

–  Local	
 clusters	
 with	
 21	

machines,	
 mix	
 of	
 i5	
 and	

i7,	
 16GB	
 RAM	

–  IBM	
 Blue	
 Gene/P,	
 1024	

PowerPC-­‐450	
 CPUs	
 with	
 4	

cores,	
 4GB	
 RAM	

Figure 10. Delayed vertex migration

G(N,E) |N | |E|
kg1 1,048,576 5,360,368
kg4m68m 4,194,304 68,671,566
web-Google 875,713 5,105,039
LiveJournal1 4,847,571 68,993,773
hollywood-2011 2,180,759 228,985,632
arabic-2005 22,744,080 639,999,458

Table 1. Datasets—N , E denote nodes and edges, respec-
tively. Graphs with prefix kg are synthetic.

ning is disabled for superstep SS

t+1 after applying delayed
migration to ensure the consistency of the migration plans.

An example is shown in Figure 10, where Vertex 7 is
migrated using delayed migration. As Vertex 7 migrates,
the ownership of Vertex 7 is moved to Worker new and
messages sent to Vertex 7 at SS

t+1 are addressed to
Worker new. At the barrier of SS

t+1, Worker old sends
the edge information and state of v to Worker new and starts
SS

t+2 with v fully migrated to Worker new.
With delayed migration, the consistency of computation

is maintained without introducing additional network cost
for vertices with large message queues. Since delayed mi-
gration uses two supersteps to complete, Mizan may need
more steps before it converges on a balanced state.

5. Evaluation
We implemented Mizan using C++ and MPI and compared
it against Giraph [8], a Pregel clone implemented in Java
on top of Hadoop. We ran our experiments on a local clus-
ter of 21 machines equipped with a mix of i5 and i7 pro-
cessors with 16GB RAM on each machine. We also used
an IBM Blue Gene/P supercomputer with 1024 PowerPC-
450 CPUs, each with 4 cores at 850MHz and 4GB RAM.
We downloaded publicly available datasets from the Stan-
ford Network Analysis Project6 and from The Laboratory for

6
http://snap.stanford.edu

Figure 11. Comparing Static Mizan vs. Giraph using
PageRank on social network and random graphs

Web Algorithmics (LAW) [2, 20]. We also generated syn-
thetic datasets using the Kronecker [21] generator that mod-
els the structure of real life networks. The details are shown
in Table 1.

To better isolate the effects of dynamic migration on
system performance, we implemented three variations of
Mizan: Static, Work Stealing (WS), and Mizan. Static Mizan
disables any dynamic migration and uses either hash-based,
range-based or min-cuts graph pre-partitioning (rendering
it similar to Giraph). Work Stealing (WS) Mizan is our
attempt to emulate Pregel’s coarse-grained dynamic load
balancing behavior (described in [23]). Finally, Mizan is our
framework that supports dynamic migration as described in
Sections 3 and 4.

We evaluated Mizan across three dimensions: partitioning
scheme, graph structure, and algorithm behavior. We par-
tition the datasets using three schemes: hash-based, range-
based, and METIS partitioning. We run our experiments
against both social and random graphs. Finally, we experi-
mented with the algorithms described in Section 2.1.

5.1 Giraph vs. Mizan
We picked Giraph for its popularity as an open source Pregel
framework with broad adoption. We only compared Giraph
to Static Mizan, which allows us to evaluate our base (non-
dynamic) implementation. Mizan’s dynamic migration is
evaluated later in this section. To further equalize Giraph and
the Static Mizan, we disabled the fault tolerance feature of
Giraph to eliminate any additional overhead resulting from
frequent snapshots during runtime. In this section, we report
the results using PageRank (a stationary and well balanced
algorithm) using different graph structures.

In Figure 11, we ran both frameworks on social network
and random graphs. As shown, Static Mizan outperforms Gi-
raph by a large margin, up to four times faster than Giraph in
kg4m68, which contains around 70M edges. We also com-
pared both systems when increasing the number of nodes
in random structure graphs. As shown in Figure 12, Static

���

29	

Synthe2c	
 datasets	
 are	
 generated	
 by	

Kronecker	
 generator.	

Giraph	
 vs.	
 Mizan	

30	

Figure 10. Delayed vertex migration

G(N,E) |N | |E|
kg1 1,048,576 5,360,368
kg4m68m 4,194,304 68,671,566
web-Google 875,713 5,105,039
LiveJournal1 4,847,571 68,993,773
hollywood-2011 2,180,759 228,985,632
arabic-2005 22,744,080 639,999,458

Table 1. Datasets—N , E denote nodes and edges, respec-
tively. Graphs with prefix kg are synthetic.

ning is disabled for superstep SS

t+1 after applying delayed
migration to ensure the consistency of the migration plans.

An example is shown in Figure 10, where Vertex 7 is
migrated using delayed migration. As Vertex 7 migrates,
the ownership of Vertex 7 is moved to Worker new and
messages sent to Vertex 7 at SS

t+1 are addressed to
Worker new. At the barrier of SS

t+1, Worker old sends
the edge information and state of v to Worker new and starts
SS

t+2 with v fully migrated to Worker new.
With delayed migration, the consistency of computation

is maintained without introducing additional network cost
for vertices with large message queues. Since delayed mi-
gration uses two supersteps to complete, Mizan may need
more steps before it converges on a balanced state.

5. Evaluation
We implemented Mizan using C++ and MPI and compared
it against Giraph [8], a Pregel clone implemented in Java
on top of Hadoop. We ran our experiments on a local clus-
ter of 21 machines equipped with a mix of i5 and i7 pro-
cessors with 16GB RAM on each machine. We also used
an IBM Blue Gene/P supercomputer with 1024 PowerPC-
450 CPUs, each with 4 cores at 850MHz and 4GB RAM.
We downloaded publicly available datasets from the Stan-
ford Network Analysis Project6 and from The Laboratory for

6
http://snap.stanford.edu













 


















Figure 11. Comparing Static Mizan vs. Giraph using
PageRank on social network and random graphs

Web Algorithmics (LAW) [2, 20]. We also generated syn-
thetic datasets using the Kronecker [21] generator that mod-
els the structure of real life networks. The details are shown
in Table 1.

To better isolate the effects of dynamic migration on
system performance, we implemented three variations of
Mizan: Static, Work Stealing (WS), and Mizan. Static Mizan
disables any dynamic migration and uses either hash-based,
range-based or min-cuts graph pre-partitioning (rendering
it similar to Giraph). Work Stealing (WS) Mizan is our
attempt to emulate Pregel’s coarse-grained dynamic load
balancing behavior (described in [23]). Finally, Mizan is our
framework that supports dynamic migration as described in
Sections 3 and 4.

We evaluated Mizan across three dimensions: partitioning
scheme, graph structure, and algorithm behavior. We par-
tition the datasets using three schemes: hash-based, range-
based, and METIS partitioning. We run our experiments
against both social and random graphs. Finally, we experi-
mented with the algorithms described in Section 2.1.

5.1 Giraph vs. Mizan
We picked Giraph for its popularity as an open source Pregel
framework with broad adoption. We only compared Giraph
to Static Mizan, which allows us to evaluate our base (non-
dynamic) implementation. Mizan’s dynamic migration is
evaluated later in this section. To further equalize Giraph and
the Static Mizan, we disabled the fault tolerance feature of
Giraph to eliminate any additional overhead resulting from
frequent snapshots during runtime. In this section, we report
the results using PageRank (a stationary and well balanced
algorithm) using different graph structures.

In Figure 11, we ran both frameworks on social network
and random graphs. As shown, Static Mizan outperforms Gi-
raph by a large margin, up to four times faster than Giraph in
kg4m68, which contains around 70M edges. We also com-
pared both systems when increasing the number of nodes
in random structure graphs. As shown in Figure 12, Static

���















    
















Figure 12. Comparing Mizan vs. Giraph using PageRank
on regular random graphs, the graphs are uniformly dis-
tributed with each has around 17M edge

Mizan consistently outperforms Giraph in all datasets and
reaches up to three times faster with 16 million vertexes.
While the execution time of both frameworks increases lin-
early with graph size, the rate of increase—slope of the
graph—for Giraph (0.318) is steeper than Mizan (0.09), in-
dicating that Mizan also achieves better scalability.

The experiments in Figures 12 and 11 show that Giraph’s
implementation is inefficient. It is a non-trivial task to dis-
cover the source of inefficiency in Giraph since it is tightly
coupled with Hadoop. We suspect that part of the ineffi-
ciency is due to the initialization cost of the Hadoop jobs
and the high overhead of communication. Other factors, like
internal data structure choice and memory footprint, might
also play a role in this inefficiency.

5.2 Effectiveness of Dynamic Vertex Migration
Given the large performance difference between Static
Mizan and Giraph, we exclude Giraph from further exper-
iments and focus on isolating the effects of dynamic migra-
tion on the overall performance of the system.

Figure 13 shows the results for running PageRank on a
social graph with various partitioning schemes. We notice
that both hash-based and METIS partitioning achieve a bal-
anced workload for PageRank such that dynamic migration
did not improve the results. In comparison, range-based par-
titioning resulted in poor graph partitioning. In this case, we
observe Mizan (with dynamic partitioning) was able to re-
duce execution time by approximately 40% when compared
to the static version. We have also evaluated the diameter es-
timation algorithm, which behaves the same as PageRank,
but exchanges larger size messages. Mizan exhibited similar
behavior with diameter estimation; the results are omitted
for space considerations.

Figure 14 shows how Mizan’s dynamic migration was
able to optimize running PageRank starting with range-
based partitioning. The figure shows that Mizan’s migration
reduced both the variance in workers’ runtime and the su-

Figure 13. Comparing Static Mizan and Work Stealing
(Pregel clone) vs. Mizan using PageRank on a social graph
(LiveJournal1). The shaded part of each column repre-
sents the algorithm runtime while unshaded parts represents
the initial partitioning cost of the input graph.

perstep’s runtime. The same figure also shows that Mizan’s
migration alternated the optimization objective between the
number of outgoing messages and vertex response time, il-
lustrated as points on the superstep’s runtime trend.

By looking at both Figures 14 and 15, we observe that
the convergence of Mizan’s dynamic migration is correlated
with the algorithm’s runtime reduction. For the PageRank
algorithm with range-based partitioning, Mizan requires 13
supersteps to reach an acceptable balanced workload. Since
PageRank is a stationary algorithm, Mizan’s migration con-
verged quickly; we expect that it would require more super-
steps to converge on other algorithms and datasets. In gen-
eral, Mizan requires multiple supersteps before it balances
the workload. This also explains why running Mizan with
range-based partitioning is less efficient than running Mizan
with METIS or hash-based partitioning.

As described in Section 2.1, Top-K PageRank adds vari-
ability in the communication among the graph nodes. As
shown in Figure 16, such variability in the messages ex-
changed leads to minor variation in both hash-based and
METIS execution times. Similarly, in range partitioning,
Mizan had better performance than the static version. The
slight performance improvement arises from the fact that the
base algorithm (PageRank) dominates the execution time. If
a large number of queries are performed, the improvements
will be more significant.

To study the effect of algorithms with highly variable
messaging patterns, we evaluated Mizan using two algo-
rithms: DMST and advertisement propagation simulation.
In both cases, we used METIS to pre-partition the graph
data. METIS partitioning groups the strongly connected sub-
graphs into clusters, thus minimizing the global communica-
tion among each cluster.

In DMST, as discussed in Section 2.1, computation com-
plexity increases with vertex connectivity degree. Because

���

•  First,	
 Sta2c	
 Mizan	
 was	

compared	
 to	
 Giraph.	

–  In	
 Sta2c	
 Mizan,	
 dynamic	

migra2ons	
 never	
 occur	
 and	

graph	
 pre-­‐par22oning	
 is	

used.	

•  In	
 Figure	
 11	
 and	
 12,	
 Sta2c	

Mizan	
 is	
 faster	
 than	

Giraph.	

Dynamic	
 Vertex	
 Migra2on	

Figure 12. Comparing Mizan vs. Giraph using PageRank
on regular random graphs, the graphs are uniformly dis-
tributed with each has around 17M edge

Mizan consistently outperforms Giraph in all datasets and
reaches up to three times faster with 16 million vertexes.
While the execution time of both frameworks increases lin-
early with graph size, the rate of increase—slope of the
graph—for Giraph (0.318) is steeper than Mizan (0.09), in-
dicating that Mizan also achieves better scalability.

The experiments in Figures 12 and 11 show that Giraph’s
implementation is inefficient. It is a non-trivial task to dis-
cover the source of inefficiency in Giraph since it is tightly
coupled with Hadoop. We suspect that part of the ineffi-
ciency is due to the initialization cost of the Hadoop jobs
and the high overhead of communication. Other factors, like
internal data structure choice and memory footprint, might
also play a role in this inefficiency.

5.2 Effectiveness of Dynamic Vertex Migration
Given the large performance difference between Static
Mizan and Giraph, we exclude Giraph from further exper-
iments and focus on isolating the effects of dynamic migra-
tion on the overall performance of the system.

Figure 13 shows the results for running PageRank on a
social graph with various partitioning schemes. We notice
that both hash-based and METIS partitioning achieve a bal-
anced workload for PageRank such that dynamic migration
did not improve the results. In comparison, range-based par-
titioning resulted in poor graph partitioning. In this case, we
observe Mizan (with dynamic partitioning) was able to re-
duce execution time by approximately 40% when compared
to the static version. We have also evaluated the diameter es-
timation algorithm, which behaves the same as PageRank,
but exchanges larger size messages. Mizan exhibited similar
behavior with diameter estimation; the results are omitted
for space considerations.

Figure 14 shows how Mizan’s dynamic migration was
able to optimize running PageRank starting with range-
based partitioning. The figure shows that Mizan’s migration
reduced both the variance in workers’ runtime and the su-




























































Figure 13. Comparing Static Mizan and Work Stealing
(Pregel clone) vs. Mizan using PageRank on a social graph
(LiveJournal1). The shaded part of each column repre-
sents the algorithm runtime while unshaded parts represents
the initial partitioning cost of the input graph.

perstep’s runtime. The same figure also shows that Mizan’s
migration alternated the optimization objective between the
number of outgoing messages and vertex response time, il-
lustrated as points on the superstep’s runtime trend.

By looking at both Figures 14 and 15, we observe that
the convergence of Mizan’s dynamic migration is correlated
with the algorithm’s runtime reduction. For the PageRank
algorithm with range-based partitioning, Mizan requires 13
supersteps to reach an acceptable balanced workload. Since
PageRank is a stationary algorithm, Mizan’s migration con-
verged quickly; we expect that it would require more super-
steps to converge on other algorithms and datasets. In gen-
eral, Mizan requires multiple supersteps before it balances
the workload. This also explains why running Mizan with
range-based partitioning is less efficient than running Mizan
with METIS or hash-based partitioning.

As described in Section 2.1, Top-K PageRank adds vari-
ability in the communication among the graph nodes. As
shown in Figure 16, such variability in the messages ex-
changed leads to minor variation in both hash-based and
METIS execution times. Similarly, in range partitioning,
Mizan had better performance than the static version. The
slight performance improvement arises from the fact that the
base algorithm (PageRank) dominates the execution time. If
a large number of queries are performed, the improvements
will be more significant.

To study the effect of algorithms with highly variable
messaging patterns, we evaluated Mizan using two algo-
rithms: DMST and advertisement propagation simulation.
In both cases, we used METIS to pre-partition the graph
data. METIS partitioning groups the strongly connected sub-
graphs into clusters, thus minimizing the global communica-
tion among each cluster.

In DMST, as discussed in Section 2.1, computation com-
plexity increases with vertex connectivity degree. Because

���

31	

•  Hash-­‐based	
 and	
 METIS	

par22oning	
 make	
 lijle	

differences.	

•  However,	
 effec2veness	

of	
 dynamic	
 migra2on	
 is	

showed	
 in	
 the	
 range-­‐
based	
 par22oning.	

Dynamic	
 Vertex	
 Migra2on	

32	

•  In	
 PageRank	
 algorithm,	

the	
 dynamic	
 migra2on	

is	
 correlated	
 with	

run2me	
 reduc2on.	

–  It	
 would	
 take	
 more	

supersteps	
 when	

workload	
 is	
 balanced	
 in	

other	
 algorithms.	














     























Figure 14. Comparing Mizan’s migration cost with the su-
perstep’s (or the algorithm) runtime at each supertstep us-
ing PageRank on a social graph (LiveJournal1) starting
with range based partitioning. The points on the superstep’s
runtime trend represents Mizan’s migration objective at that
specific superstep.

Figure 15. Comparing both the total migrated vertices and
the maximum migrated vertices by a single worker for
PageRank on LiveJournal1 starting with range-based par-
titioning. The migration cost at each superstep is also shown.

of the quadratic complexity of computation as a function of
connectivity degree, some workers will suffer from exten-
sive workload while others will have light workload. Such
imbalance in the workload leads to the results shown in Fig-
ure 17. Mizan was able to reduce the imbalance in the work-
load, resulting in a large drop in execution time (two orders
of magnitude improvement). Even when using our version
of Pregel’s load balancing approach (called work stealing),
Mizan is roughly eight times faster.

Similar to DMST, the behavior of the advertising propa-
gation simulation algorithm varies across supersteps. In this
algorithm, a dynamic set of graph vertices communicate
heavily with each other, while others have little or no com-
munication. In every superstep, the communication behav-
ior differs depending on the state of the vertex. Therefore,
it creates an imbalance across the workers for every super-

Figure 16. Comparing static Mizan and Work Stealing
(Pregel clone) vs. Mizan using Top-K PageRanks on a so-
cial graph (LiveJournal1). The shaded part of each col-
umn represents the algorithm runtime while unshaded parts
represents the initial partitioning cost of the input graph.

Figure 17. Comparing Work stealing (Pregel clone) vs.
Mizan using DMST and Propagation Simulation on a metis
partitioned social graph (LiveJournal1)

Total runtime (s) 707
Data read time to memory (s) 72

Migrated vertices 1,062,559
Total migration time (s) 75

Average migrate time per vertex (µs) 70.5

Table 2. Overhead of Mizan’s migration process when
compared to the total runtime using range partitioning on
LiveJournal1 graph

step. Even METIS partitioning in such case is ill-suited since
workers’ load dynamically changes at runtime. As shown in
Figure 17, similar to DMST, Mizan is able to reduce such an
imbalance, resulting in approximately 200% speed up when
compared to the work stealing and static versions.

���

Figure 14. Comparing Mizan’s migration cost with the su-
perstep’s (or the algorithm) runtime at each supertstep us-
ing PageRank on a social graph (LiveJournal1) starting
with range based partitioning. The points on the superstep’s
runtime trend represents Mizan’s migration objective at that
specific superstep.













     














































Figure 15. Comparing both the total migrated vertices and
the maximum migrated vertices by a single worker for
PageRank on LiveJournal1 starting with range-based par-
titioning. The migration cost at each superstep is also shown.

of the quadratic complexity of computation as a function of
connectivity degree, some workers will suffer from exten-
sive workload while others will have light workload. Such
imbalance in the workload leads to the results shown in Fig-
ure 17. Mizan was able to reduce the imbalance in the work-
load, resulting in a large drop in execution time (two orders
of magnitude improvement). Even when using our version
of Pregel’s load balancing approach (called work stealing),
Mizan is roughly eight times faster.

Similar to DMST, the behavior of the advertising propa-
gation simulation algorithm varies across supersteps. In this
algorithm, a dynamic set of graph vertices communicate
heavily with each other, while others have little or no com-
munication. In every superstep, the communication behav-
ior differs depending on the state of the vertex. Therefore,
it creates an imbalance across the workers for every super-

Figure 16. Comparing static Mizan and Work Stealing
(Pregel clone) vs. Mizan using Top-K PageRanks on a so-
cial graph (LiveJournal1). The shaded part of each col-
umn represents the algorithm runtime while unshaded parts
represents the initial partitioning cost of the input graph.

Figure 17. Comparing Work stealing (Pregel clone) vs.
Mizan using DMST and Propagation Simulation on a metis
partitioned social graph (LiveJournal1)

Total runtime (s) 707
Data read time to memory (s) 72

Migrated vertices 1,062,559
Total migration time (s) 75

Average migrate time per vertex (µs) 70.5

Table 2. Overhead of Mizan’s migration process when
compared to the total runtime using range partitioning on
LiveJournal1 graph

step. Even METIS partitioning in such case is ill-suited since
workers’ load dynamically changes at runtime. As shown in
Figure 17, similar to DMST, Mizan is able to reduce such an
imbalance, resulting in approximately 200% speed up when
compared to the work stealing and static versions.

���

Dynamic	
 Vertex	
 Migra2on	

•  In	
 the	
 both	
 of	
 algorithms,	

Mizan	
 resulted	
 in	
 about	

200%	
 speed	
 up.	

Figure 14. Comparing Mizan’s migration cost with the su-
perstep’s (or the algorithm) runtime at each supertstep us-
ing PageRank on a social graph (LiveJournal1) starting
with range based partitioning. The points on the superstep’s
runtime trend represents Mizan’s migration objective at that
specific superstep.

Figure 15. Comparing both the total migrated vertices and
the maximum migrated vertices by a single worker for
PageRank on LiveJournal1 starting with range-based par-
titioning. The migration cost at each superstep is also shown.

of the quadratic complexity of computation as a function of
connectivity degree, some workers will suffer from exten-
sive workload while others will have light workload. Such
imbalance in the workload leads to the results shown in Fig-
ure 17. Mizan was able to reduce the imbalance in the work-
load, resulting in a large drop in execution time (two orders
of magnitude improvement). Even when using our version
of Pregel’s load balancing approach (called work stealing),
Mizan is roughly eight times faster.

Similar to DMST, the behavior of the advertising propa-
gation simulation algorithm varies across supersteps. In this
algorithm, a dynamic set of graph vertices communicate
heavily with each other, while others have little or no com-
munication. In every superstep, the communication behav-
ior differs depending on the state of the vertex. Therefore,
it creates an imbalance across the workers for every super-

Figure 16. Comparing static Mizan and Work Stealing
(Pregel clone) vs. Mizan using Top-K PageRanks on a so-
cial graph (LiveJournal1). The shaded part of each col-
umn represents the algorithm runtime while unshaded parts
represents the initial partitioning cost of the input graph.

































Figure 17. Comparing Work stealing (Pregel clone) vs.
Mizan using DMST and Propagation Simulation on a metis
partitioned social graph (LiveJournal1)

Total runtime (s) 707
Data read time to memory (s) 72

Migrated vertices 1,062,559
Total migration time (s) 75

Average migrate time per vertex (µs) 70.5

Table 2. Overhead of Mizan’s migration process when
compared to the total runtime using range partitioning on
LiveJournal1 graph

step. Even METIS partitioning in such case is ill-suited since
workers’ load dynamically changes at runtime. As shown in
Figure 17, similar to DMST, Mizan is able to reduce such an
imbalance, resulting in approximately 200% speed up when
compared to the work stealing and static versions.

���

33	

Scalability	
 of	
 Mizan	
Linux Cluster Blue Gene/P

hollywood-2011 arabic-2005

Processors Runtime (m) Processors Runtime (m)
2 154 64 144.7
4 79.1 128 74.6
8 40.4 256 37.9
16 21.5 512 21.5

1024 17.5

Table 3. Scalability of Mizan on a Linux Cluster of
16 machines (hollywood-2011 dataset), and an IBM
Blue Gene/P supercomputer (arabic-2005 dataset).

5.3 Overhead of Vertex Migration
To analyze migration cost, we measured the time for var-
ious performance metrics of Mizan. We used the PageR-
ank algorithm with a range-based partitioning of the
Live-Journal1 dataset on 21 workers. We chose range-
based partitioning as it provides the worst data distribution
according to previous experiments and therefore will trigger
frequent vertex migrations to balance the workload.

Table 2 reports the average cost of migrating as 70.5 µs
per vertex. In the LiveJournal1 dataset, Mizan paid a 9%
penalty of the total runtime to balance the workload, trans-
ferring over 1M vertices. As shown earlier in Figure 13, this
resulted in a 40% saving in computation time when com-
pared to Static Mizan. Moreover, Figures 14 and 15 compare
the algorithm runtime and the migration cost at each super-
step, the migration cost is at most 13% (at superstep 2) and
on average 6% for all supersteps that included a migration
phase.

5.4 Scalability of Mizan
We tested the scalability of Mizan on the Linux cluster
as shown in Table 3. We used two compute nodes as our
base reference as a single node was too small when running
the dataset (hollywood-2011), causing significant paging
activities. As Figure 18 shows, Mizan scales linearly with
the number of workers.

We were interested in performing large scale-out experi-
ments, well beyond what can be achieved on public clouds.
Since Mizan’s was written in C++ and uses MPI for mes-
sage passing, it was easily ported to IBM’s Blue Gene/P su-
percomputer. Once ported, we natively ran Mizan on 1024
Blue Gene/P compute nodes. The results are shown in Ta-
ble 3. We ran the PageRank algorithm using a huge graph
(arabic-2005) that contains 639M edges. As shown in
Figure 19, Mizan scales linearly from 64 to 512 compute
nodes then starts to flatten out as we increase to 1024 com-
pute nodes. The flattening was expected since with an in-
creased number of cores, compute nodes will spend more
time communicating than computing. We expect that as we
continue to increase the number of CPUs, most of the time

Figure 18. Speedup on Linux Cluster of 16 machines using
PageRank on the hollywood-2011 dataset.












 
















Figure 19. Speedup on Shaheen IBM Blue Gene/P super-
computer using PageRank on the arabic-2005 dataset.

will be spent communicating (which effectively breaks the
BSP model of overlapping communication and computa-
tion).

6. Related Work
In the past few years, a number of large scale graph process-
ing systems have been proposed. A common thread across
the majority of existing work is how to partition graph data
and how to balance computation across compute nodes. This
problem is known as applying dynamic load balancing to the
distributed graph data by utilizing on the fly graph partition-
ing, which Bruce et al. [11] assert to be either too expen-
sive or hard to parallelize. Mizan follows the Pregel model,
but focuses on dynamic load balancing of vertexes. In this
section, we examine the design aspects of existing work for
achieving a balanced workload.

Pregel and its Clones. The default partitioning scheme for
the input graph used by Pregel [23] is hash based. In every
superstep, Pregel assigns more than one subgraph (partition)
to a worker. While this load balancing approach helps in bal-
ancing computation in any superstep, it is coarse-grained

���

Linux Cluster Blue Gene/P

hollywood-2011 arabic-2005

Processors Runtime (m) Processors Runtime (m)
2 154 64 144.7
4 79.1 128 74.6
8 40.4 256 37.9
16 21.5 512 21.5

1024 17.5

Table 3. Scalability of Mizan on a Linux Cluster of
16 machines (hollywood-2011 dataset), and an IBM
Blue Gene/P supercomputer (arabic-2005 dataset).

5.3 Overhead of Vertex Migration
To analyze migration cost, we measured the time for var-
ious performance metrics of Mizan. We used the PageR-
ank algorithm with a range-based partitioning of the
Live-Journal1 dataset on 21 workers. We chose range-
based partitioning as it provides the worst data distribution
according to previous experiments and therefore will trigger
frequent vertex migrations to balance the workload.

Table 2 reports the average cost of migrating as 70.5 µs
per vertex. In the LiveJournal1 dataset, Mizan paid a 9%
penalty of the total runtime to balance the workload, trans-
ferring over 1M vertices. As shown earlier in Figure 13, this
resulted in a 40% saving in computation time when com-
pared to Static Mizan. Moreover, Figures 14 and 15 compare
the algorithm runtime and the migration cost at each super-
step, the migration cost is at most 13% (at superstep 2) and
on average 6% for all supersteps that included a migration
phase.

5.4 Scalability of Mizan
We tested the scalability of Mizan on the Linux cluster
as shown in Table 3. We used two compute nodes as our
base reference as a single node was too small when running
the dataset (hollywood-2011), causing significant paging
activities. As Figure 18 shows, Mizan scales linearly with
the number of workers.

We were interested in performing large scale-out experi-
ments, well beyond what can be achieved on public clouds.
Since Mizan’s was written in C++ and uses MPI for mes-
sage passing, it was easily ported to IBM’s Blue Gene/P su-
percomputer. Once ported, we natively ran Mizan on 1024
Blue Gene/P compute nodes. The results are shown in Ta-
ble 3. We ran the PageRank algorithm using a huge graph
(arabic-2005) that contains 639M edges. As shown in
Figure 19, Mizan scales linearly from 64 to 512 compute
nodes then starts to flatten out as we increase to 1024 com-
pute nodes. The flattening was expected since with an in-
creased number of cores, compute nodes will spend more
time communicating than computing. We expect that as we
continue to increase the number of CPUs, most of the time











        










Figure 18. Speedup on Linux Cluster of 16 machines using
PageRank on the hollywood-2011 dataset.

Figure 19. Speedup on Shaheen IBM Blue Gene/P super-
computer using PageRank on the arabic-2005 dataset.

will be spent communicating (which effectively breaks the
BSP model of overlapping communication and computa-
tion).

6. Related Work
In the past few years, a number of large scale graph process-
ing systems have been proposed. A common thread across
the majority of existing work is how to partition graph data
and how to balance computation across compute nodes. This
problem is known as applying dynamic load balancing to the
distributed graph data by utilizing on the fly graph partition-
ing, which Bruce et al. [11] assert to be either too expen-
sive or hard to parallelize. Mizan follows the Pregel model,
but focuses on dynamic load balancing of vertexes. In this
section, we examine the design aspects of existing work for
achieving a balanced workload.

Pregel and its Clones. The default partitioning scheme for
the input graph used by Pregel [23] is hash based. In every
superstep, Pregel assigns more than one subgraph (partition)
to a worker. While this load balancing approach helps in bal-
ancing computation in any superstep, it is coarse-grained

���

34	

•  While	
 using	
 smaller	

data	
 sets,	
 it	
 achieved	

the	
 scalability.	

•  However,	
 in	
 1024	
 nodes	
 	

with	
 larger	
 graph,	
 the	

scale	
 became	
 flajen.	

–  The	
 reason	
 may	
 be	
 that	

compu2ng	
 2me	
 cannot	

hide	
 too	
 much	

communica2on	
 2me.	

6.	
 Related	
 Work	

•  Pregel	
 and	
 its	
 Clones	

•  Power-­‐law	
 Op2mized	
 Graph	
 Processing	

Systems	

•  Shared	
 Memory	
 Graph	
 Processing	
 Systems	

•  Specialized	
 Graph	
 Systems	

35	

7.	
 Future	
 Work	

•  In	
 order	
 to	
 reduce	
 migra2on	
 costs,	
 the	

frequency	
 of	
 them	
 should	
 be	
 reduced.	

– Vertex	
 replica2on	
 proposed	
 by	
 PowerGraph	
 may	

be	
 useful.	

•  In	
 the	
 evalua2ons,	
 graph	
 was	
 par22oned	
 only	

by	
 single	
 applica2on	
 or	
 algorithm.	

–  If	
 experiments	
 using	
 mul2ple	
 algorithms	
 on	
 the	

same	
 graph	
 are	
 conducted,	
 bejer	
 result	
 will	
 gain.	

36	

8.	
 Conclusion	

•  A	
 Pregel	
 system	
 called	
 Mizan	
 was	
 presented.	

–  Iden2fies	
 the	
 cause	
 of	
 workload	
 imbalance.	

– Conducts	
 fine-­‐grained	
 vertex	
 migra2on.	

•  Performance	
 evalua2on	
 showed	
 it	
 had	
 most	

efficiency	
 and	
 robustness.	

–  It	
 also	
 showed	
 the	
 linear	
 scalability	
 to	
 hundreds	

nodes.	

37	

Contribu2ons	

•  Analyzed	
 some	
 graph	
 algorithm	
 characteris2cs	

that	
 can	
 contribute	
 to	
 imbalanced	

computa2on	
 of	
 a	
 Pregel	
 system.	

•  Proposed	
 a	
 dynamic	
 migra2on	
 model	
 based	

on	
 run2me	
 monitoring	
 of	
 ver2ces.	

•  Implemented	
 Mizan	
 in	
 C++	
 and	
 MPI	
 as	
 an	

op2mized	
 Pregel	
 system.	

•  Deployed	
 Mizan	
 and	
 showed	
 linear	
 scalability.	

38	

My	
 Impression	
 1	

•  Even	
 Mizan	
 assumes	
 many	
 nodes	
 computa2on,	

data	
 sets	
 might	
 not	
 large	
 enough.	

– The	
 number	
 of	
 nodes	
 is	
 23	
 million	
 at	
 most.	

–  I	
 wanted	
 to	
 see	
 the	
 result	
 of	
 evalua2ons	
 using	

billion-­‐scale	
 graph.	

–  I	
 think	
 that	
 scalability	
 would	
 be	
 less	
 and	
 less	
 with	

using	
 larger	
 network.	

•  Migra2on	
 cost	
 would	
 be	
 more	
 visible.	

39	

My	
 Impression	
 2	

•  It	
 has	
 substan2al	
 analyzing	
 and	
 evalua2ons	
 on	

graph	
 algorithms.	

– Thought	
 of	
 categories	
 “(Non-­‐)sta2onary	

algorithms”	
 seems	
 to	
 be	
 useful.	

–  I	
 found	
 that	
 many	
 graph	
 par22oning	
 algorithms	

for	
 preprocessing	
 are	
 worth	
 trying.	

40	

My	
 Impression	
 3	

•  The	
 series	
 of	
 algorithms	
 and	
 implements	
 of	

Mizan	
 will	
 serve	
 as	
 a	
 reference	
 of	
 my	
 research.	

–  I	
 am	
 researching	
 an	
 efficient	
 traffic	
 simula2ons	

using	
 million-­‐scale	
 road	
 network.	

– The	
 main	
 problem	
 in	
 these	
 simula2ons	
 is	
 also	
 load	

unbalancing	
 caused	
 by	
 vehicles.	

• We	
 cannot	
 predict	
 the	
 number	
 of	
 vehicles	
 (messages).	

– The	
 idea	
 of	
 “delayed	
 migra2on”	
 can	
 be	

implemented	
 to	
 my	
 simula2ons.	

41	

Thank	
 you	
 for	
 listening	

42	

