High Performance Computing
Paper Review

Hiroki Kanezashi
13M 38152

Reviewed Paper 1

“Mizan: A System for Dynamic Load Balancing in
Large-scale Graph Processing”

[EuroSys '13 Proceedingsof the 8th ACM European
Conference on Computer Systems]

Zuhair Khayyat! Karim Awara! Amani Alonazi*

Hani Jamjoom? Dan Williams? Panos Kalnis'

1King Abdullah University of Science and Technology, Saudi Arabia
2IBM T. J. Watson Research Center, Yorktown Heights, NY

Reviewed Paper 2

“Breaking the Speed and Scalability Barriers for
Graph Exploration on Distributed-memory
Machines”

[International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2012]

Fabio Checconi, Fabrizio Petrinil,
Jeremiah Willcock, Andrew Lumsdaine?,
Anamitra Roy Choudhury, Yogish Sabharwal3

1IIBM T. J. Watson Research Center, Yorktown Heights, NY 10598
2CREST, Indiana University Bloomington, IN 47405
3IBM India Research, New Delhi, DL 110070, India

Reviewed Paper 3

“Parallel Breadth-First Search on Distributed
Memory Systems”
[SC '11 Proceedings of 2011 International Conference

for High Performance Computing, Networking, Storage
and Analysis]

Aydin Buluc and Kamesh Madduri

Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA

Outline

Introduction

Dynamic Behavior of Algorithms
Mizan

Implementation

Evaluation

Related Work

Future Work

Conclusion

* My Impressions

O N U s WwWhE

1. Introduction

 To make better use of graph data and mining
algorithms, many platforms are proposed.

— Pregel

— HADI

— PEGASUS
— X-RIME

* This paper focused on Pregel.

About Pregel

* Pregel is used for large graph minings
recently.

— Message passing-based
— Performs better than MapReduce

— Built on the Bulk Synchronous Parallel (BSP)
model

 Computation is divided into “supersteps”.
* These supersteps are separated by global barrier.

Load balancing

* |n a Pregel system, balanced computation and
communication is fundamental.

* Pregel and other implemented platforms have
systems to do so.
— Giraph
— GoldenOrb
— Hama

— Surfer

Recent Approaches for Balancing

Use hash- / range-based graph partitioning

Entrust developers to use their own
partitioning scheme or pre-partition data

Provide sophisticated techniques

Utilize distributed data stores and indexing on
vertices and edges

Perform coarse-grained load balancing

The Efficacy of Recent Methods

* Are these method effective for large graph?
— They are static approaches.
— Developers should predict the behavior.

— Developers should know runtime characteristics.

2. Dynamic Behavior of Algorithms

* There are many factors
aﬁec:t the runtlme ¢ Superstep 1 > g Superstep 2 ><Superstep3
performance in Pregel.

— When vertices are active,
they compute, send and
receive messages. — . ““Agsp Barrer

q .
-Vertex response time *+.,, -Time to receive in messages

— Some messages are sent to e to & ot mosssges
another workers (nodes). Figure 1. Factors that can affect the runtime in the Pregel

framework

Worker 1 Worker 1 Worker 1

Worker 2 Worker 2 Worker 2

Worker 3

 Some factors can be
masked by over|apping or All figures and tables are retrived
. . from the reviewed paper.
running many vertices.

Workload imbalance

* |tis difficult to achieve a balanced workload for
graph structure and algorithms behavior.

* Some nodes may take a long time to compute
many nodes, send and receive many messages.

* As this paper introduced, many approaches are
used in Pregel systems.

Evaluation of recent methods

- G(N, E) |N| |E|
o
kgdm68m 4,194,304 | 68,671,566
a p p Froac h es are web-Google 875,713 | 5,105,039
LiveJournall 4,847,571 | 68,993,773
1 hollywood-2011 | 2,180,759 | 228,985,632
eva | u a te d u S I n g t h e S e arabic-2005 22,744,080 | 639,999,458
d at a Sets Table 1. Datasets— /N, E denote nodes and edges, respec-

tively. Graphs with prefix kg are synthetic.

— Hash-based o
300 - Range mm 3% .

- Ra nge—based 250 Min-cuts [N <

200

150

— Minimum-cuts

Run Time (Min)

100
50

0

q

LivejOUrnk/graph4 arabi

’hsgmc"Z 005

Figure 2. The difference in execution time when processing
PageRank on different graphs using hash-based, range-based
and min-cuts partitioning. Because of its size, arabic-2005
cannot be partitioned using min-cuts (ParMETIS) in our
local cluster.

Categolize Graph Algorithms

* Not only graph structure, but also graph
algorithms can affect the workload balance.

* They can be categolized according to
communication characteristics.

— Stationary
— Non-stationary

Categolize Graph Algorithms

Stationary

e Distributions of sent

messages do not change.

 Example
— PageRank
— Diameter estimation

— Finding weakly connected
components

Non-Stationary

e Destinations or sizes of
messages can change.

 Example

— Distributed minimal spanning
tree construction (DMST)

— Graph queries
— Simulations on social network
graphs

Categolize Graph Algorithms

 While running two
algorithms in 21 nodes,
Non-stationary
algorithms (DMST) sent
more and more
messages.

1000 ¢
100 E
10

0.1 ¢
0.01

0.001 -
0 10 20 30 40 50 60

SuperSteps

In Messages (Millions)
=

PageRank - Total =—- DMST - Total ===-
PageRank - Max == DMST - Max =—

Figure 3. The difference between stationary and non-
stationary graph algorithms with respect to the incoming
messages. Total represents the sum across all workers and
Max represents the maximum amount (on a single worker)
across all workers.

16

3. Mizan

e Common point with Pregel
— A BSP-based graph processing system
— Reads graph and partition before supersteps

e Different point with Pregel

— Focuses on efficient dynamic load balancing of
both computation and communication

— Moves some vertices across workers (migration)
e Distributed runtime monitoring
* Distributed migration planner

17

Monitoring

* Mizan system monitors three metrics
— The number of outgoing messages

e Counts messages to other vertices in remote workers.
* Local outgoing ones never affect network cost.
— The number of total incoming messages
e Counts ones from remote vertices and locally generated.
— The response time (execution time)

* Measured for each vertex at each superstep.

Monitoring

Vertex

Response Time
4 Remote Outgoing Messages

“, Worker 1 Voo, Worker 2

Local Incoming Messages Remote Incoming Messages

Figure 4. The statistics monitored by Mizan

Migration Planning

|dentify the source of

. -Compute()
imbalance. F _l

BSP

Select the migration
O bJ ectl Ve . Mé%rra;it(iac;n i
Pair over-utilized and 1 e

under-utilized workers. S mbarance
Select vertices to

. ng\rfgtrﬁi?;ad?
migrate. ‘

: . Figure 6. Summary of Mizan’s Migration Planner
Migrate vertices. 8 g e

Detecting Imbalance

. Check outlier workers comparing the
summary statistics of all ones.

. Select the objective what it will optimize with
calculating correlation of the metrics.

— To balance outgoing messages
— To balance incoming messages

— To balance computation time (default)

Selecting Vertices

""""

. K

....
o .

3. Pair workers by metrics. [v]w

3

4

5

6

— If there are n workers,

top n and n-i workers should be pair.

Figure 7. Matching senders (workers with vertices to mi-
grate) with receivers using their summary statistics

— Workers without enough memory are unavailable.

4. Select vertices to move in order to minimize
the difference of sum of workloads to be

migrated and sum of those outliers.

Migrating Vertices

5. To migrate vertices, each worker will do that
in the migration barrier:

— Sending worker

 Sends encoded stream with vertex ID, state, edge
information and received messages.

e After the stream is sent, deletes the vertices.

— Receiving worker
 Receives vertices and messages.
e Prepares to run them in the next superstep.

4. Implementation

* |n Mizan, each worker
has 4 modules

— BSP Processor Vertex Compute()
* Implemented Pregel APIs Mizan Worker
Ped BSP Processor
_ Storage Manager M;?arg’rc]igp <«<>» Communicator - DHT
* Maintains the graph data ™\ Storage Manager
always correct Ilo
_ Communicator (HDFS/Local Disks)

e Uses MPI to communicate Figure 8. Architecture of Mizan

with other workers

— Migration Planner
¢ Operate across barriers

Vertex Ownership

* Mizan will not maintain centralized vertex
management especially with huge one.

e Adistributed hash table (DHT) is used to
implement a distributed lookup service.

— It stores key (ID) and value (physical location) sets.

— A “home” worker maintains current location of
assigned vertices.

Distributed Hash Table Updates

 Vertex whose home
worker is 3 will migrate

1) migrate(Vi)
Worker 1 Worker 2
fro m WO rke r 1 to 2 . BSP Processor 'ﬂ BSP Processor
. M;?;i:g: Communicator - DHT M;?;:::gp Communicator - DHT (|
1 ° Th e Ve rteX m Ig rates . Storage Manager Storage Manager “
. . 2) inform DHT(Vi)
2. Destination worker orkar 5 —
i nfo rm m ig rati O n to BSP Processor BSP Processor
Mli?;s:g: Communicator - DHT M|i?;2:gp Communicator - DHT 4(5
home Worke r- Storage Manager Storage Manager .
:3) update_loc(Vi)
3. The home Worker ...
Figure 9. Migrating vertex v; from Worker 1 to Worker 2,
u pd ates D HTS . while updating its DHT home worker (Worker 3)

Migrating Large Vertices

* |f a vertex has many messages, it costs very
much when it migrates.

 Mizan uses a delayed migration process.
— |t takes two supersteps.

— Only moves the vertex’s information and the
ownership, not large message information.

Delayed Migration

1. An ownership of the
migrated vertex is

moved to Worker_new.
— Messages will be sent to

Worker _new.

2. Worker_old sends the
edge information.

3. The vertex is fully
migrated.

Superstep t Superstep t+1 Superstep t+2

Worker old Worker old Worker old

aseyd Wopelbip

Worker_new Worker_new

Worker_new

Figure 10. Delayed vertex migration

5. Evaluation

* Mizan was implemented
using C++ and MPI.

— Compared against Giraph

G(N,E) V] |E|
(Java based Plegel clone) kel 018576 T 3360363
. kgdm68m 4,194,304 | 68,671,566
 Com putatlon nodes web-Google 875,713 5,105,039
LiveJournall 4,847,571 | 68,993,773
— Local CI usters Wlth 21 hollywood-2011 | 2,180,759 | 228,985,632
.]] arabic-2005 22,744,080 | 639,999,458
maCh | nes’ mix Of |5 d nd Table 1. Datasets—/N, E denote nodes and edges, respec-
|7 16G B R AM tively. Graphs with prefix kg are synthetic.
’
— IBM Blue Gene/P' 1024 Synthetic datasets are generated by

PowerPC-450 CPUs with 4 Kronecker generator.
cores, 4GB RAM

Giraph vs.

* First, Static Mizan was
compared to Giraph.

— In Static Mizan, dynamic
migrations never occur and
graph pre-partitioning is
used.

* In Figure 11 and 12, Static
Mizan is faster than

Giraph.

Mizan

40

Giraph mm
35 Static Mizan B2
30

25 -
20
15 -
10

Run Time (Min)

%

5
Vejoy, rng Z’n 68m

SR

Figure 11. Comparing Static Mizan vs. Giraph using
PageRank on social network and random graphs

12 Giraph mm B
Static Mizan Bx
—~ 10 + .
£
Z g~ .
(0]
£ 6+ .
|_
5 4t .
kK
0 X4

1 2 4 8 16
Vertex count (Millions)

Figure 12. Comparing Mizan vs. Giraph using PageRank
on regular random graphs, the graphs are uniformly dis-
tributed with each has around 17M edge

30

Dynamic Vertex Migration

Hash-based and METIS
partitioning make little
differences.

However, effectiveness
of dynamic migration is
showed in the range-
based partitioning.

30
_ 25 | [s
=
= 20 - .
< NN —
g 15t NN .
T 10 EEY -
2 N\
5 - NNN .
O ST T T
L c L c L c
T n _&“ ®T 0 _E wT wn _ﬁ
h = = h = = h = =
Hash Range Metis

Figure 13. Comparing Static Mizan and Work Stealing
(Pregel clone) vs. Mizan using PageRank on a social graph
(LiveJournall). The shaded part of each column repre-
sents the algorithm runtime while unshaded parts represents
the initial partitioning cost of the input graph.

31

Dynamic Vertex Migration

* |In PageRank algorithm,
the dynamic migration
is correlated with
runtime reduction.

— It would take more
supersteps when
workload is balanced in
other algorithms.

Migrated Vertices (x1000)

4 T T T T
35 Superstep Runtime =— |
= 7 Average Workers Runtime =+
9 3 Migration Cost === -
2 25 Balance Outgoing Messages [] |
s Balance Incoming Messages O
o 2 Balance Response Time X
£ +7_ -
E 2T
s 1 I
o 4 13
0.5 Lt
0 114 ek | | |
5 10 15 20 25 30
Supersteps

500

400 -

300

200

100

| | | |

Migration Cost === |
Total Migrated Vertices =—
Max Vertices Migrated == -
by Single Worker

|
(OV)

|
N
Migration Cost (Minutes)

10 15 20 25 30
Supersteps

32

Dynamic Vertex Migration

* In the both of algorithms,

Mizan resulted in about 300 -
atic X3
200% Speed up. 250 ¢ X N Work SteMaiggg E il
S 200 - N |
© N
£ 150 -~ \ |
< - N R i
E 100 \ ggi
50 |- N R 1
\ 0‘0
0 %

Figure 17. Comparing Work stealing (Pregel clone) vs.
Mizan using DMST and Propagation Simulation on a metis
partitioned social graph (LiveJournall)

33

Scalability of Mizan

* While using smaller
data sets, it achieved

the scalability.

e However, in 1024 nodes
with larger graph, the
scale became flatten.

— The reason may be that
computing time cannot
hide too much
communication time.

Speedup

O R N W H» U O N ©

Speedup

T T T T T T T

T T T T T
Mizan - hollywood-2011 ==

4 6 8 10 12 14
Compute Nodes

Mizan - Arabic-2005 ==

8¢T

|
Ul
=
N

9GC

Compute Nodes

12400}

6. Related Work

Pregel and its Clones

Power-law Optimized Graph Processing
Systems

Shared Memory Graph Processing Systems
Specialized Graph Systems

7. Future Work

* |[n order to reduce migration costs, the
frequency of them should be reduced.

— Vertex replication proposed by PowerGraph may
be useful.
* |n the evaluations, graph was partitioned only
by single application or algorithm.

— If experiments using multiple algorithms on the
same graph are conducted, better result will gain.

8. Conclusion

* A Pregel system called Mizan was presented.
— |dentifies the cause of workload imbalance.
— Conducts fine-grained vertex migration.

e Performance evaluation showed it had most

efficiency and robustness.

— It also showed the linear scalability to hundreds
nodes.

Contributions

Analyzed some graph algorithm characteristics
that can contribute to imbalanced
computation of a Pregel system.

Proposed a dynamic migration model based
on runtime monitoring of vertices.

Implemented Mizan in C++ and MPI as an
optimized Pregel system.

Deployed Mizan and showed linear scalability.

My Impression 1

 Even Mizan assumes many nodes computation,
data sets might not large enough.

— The number of nodes is 23 million at most.

— | wanted to see the result of evaluations using
billion-scale graph.

— | think that scalability would be less and less with
using larger network.
* Migration cost would be more visible.

My Impression 2

* |t has substantial analyzing and evaluations on
graph algorithms.

— Thought of categories “(Non-)stationary
algorithms” seems to be useful.

— | found that many graph partitioning algorithms
for preprocessing are worth trying.

My Impression 3

* The series of algorithms and implements of
Mizan will serve as a reference of my research.

— | am researching an efficient traffic simulations
using million-scale road network.

— The main problem in these simulations is also load
unbalancing caused by vehicles.
* We cannot predict the number of vehicles (messages).

— The idea of “delayed migration” can be
implemented to my simulations.

Thank you for listening

