High Performance Computing
Paper Review

Hiroki Kanezashi
13M38152

Reviewed Paper 1

Sailfish: a framework for large scale data

processing

[SoCC '12 Proceedings of the Third ACM Symposium on
Cloud Computing]

Sriram Rao?!, Raghu Ramakrishnan', Adam

Silberstein?, Mike Ovsiannikov3, Damian Reeves?
IMicrosoft Corp, %LinkedIn, 3Quantcast Corp

Reviewed Paper 2

Breaking the speed and scalability Barriers
for Graph exploration on distributed-
memory machines

[2012 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC)]

Checconi F, Petrini F, Willcock J, Lumsdaine A,

Choudhury A.R, Sabharwal Y.
IBM TJ Watson, Yorktown Heights, NY, USA

Reviewed Paper 3

Parallel breadth-first search on distributed
memory systems

[SC '11 Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage
and Analysis]

Aydin Buluc and Kamesh Madduri

Lawrence Berkeley National Laboratory, Berkeley, CA

Summarized Abstract

* Developed Sailfish: MapReduce framework for
large scale data processing.

* Sailfish improved performance of Hadoop by
20% ~ 5 times on real jobs and datasets.

* Sailfish design enabled auto-tuning
functionality that changes data volume and

distributions effectively.

Outline

Introduction

Intermediate Data Handling

Batching Data I/O

I-files for Aggregating Intermediate Data
. Salifish: MapReduce Using I-files

. Evaluations

. Related Work

. Summary

1. Introduction

* Data intensive computing applications
commonly process several tens of terabytes.

— These applications run on large clusters by using
parallel dataflow graph frameworks.

— These frameworks enable to simplify procedures
like task scheduling, handling data transferred
between computation steps(intermediate data).

Contributions of this paper

Optimized the transport of intermediate data
in distributed dataflow systems.

Found that data managing for disk I/O should
be a core design principle.

Developed I-files to support batching of data.

Developed and demonstrated Sailfish, a new
MapReduce framework.

2. Intermediate Data Handling

* Current MapReduce implementations have a
problem about performance while
intermediate data handling.

— For example, Hadoop stores intermediate data to
RAM, but sometimes spills them to disk.

Current Approaches (Hadoop)

M*R times

Map Output

Handles intermediate (soratoncisk

Partition1

data using merge-sort. @ -

Spills data from RAM
to a ﬁle On diSk' Partition1

(o) oo ()
R4

Partitiong >

The map task merges
the spills to a file. __

Each reduce task pull @

Partitiong e

’
data from mappers wap et
(@) utp ut ﬁ Ies, Figure 1: A reduce task retrieves its input from each of the

map tasks. The number of distinct retrievals is proportional to
M % R and the data read per retrieval is proportional to 1/R.

Reducer merges data.

Cost of handling intermediate data

* |t is dominated by the rate at which data can
be read from the disk subsystems.
— Disk performance is affected by the amount of
data read per the number of disk seek.

* |f memory-based filesystem buffer caches
cannot mask disk seeks, overhead of them
affects throughput.

The number of Mappers and Reducers

* There are many mappers and reducers, and the
number of distinct retrievals is the product of them.

 The amount of data retrieved by a reduce task is
proportional to the number of reducer tasks.

» The amount of data read per disk seek will

decreases but the number of disk seeks grows
super-linearly.

Inefficiency of Performance

* Hadoop performance
. Linear
degrades non-linearly. Scale

Stock Hadolop —

e The reason is disk
overheads involved in
the data transfer.

BN oo (@)
T T T

Job run-time (in Hours)
(W]

l 1 .11_/ 1 1 1 1
1 2 4 8 16 32 64 128
Intermediate data size (TB)

Figure 2: Hadoop performance vs. intermediate data size

System parameter tuning

e Users have to tune system parameters of such
parallel dataflow frameworks.

 However, many programmers set parameters
only once and rarely do it further.

* Data volumes will change continuously, so
performance will degrade without tuning.

3. Batching Data I/0

* Used “blocking step” techniques.
— Already exists in MapReduce, SQL Systems, Pig

* Used MapReduce as a sample application.

— Every step in the flow is blocking.

Clusters for data intensive computing

e Using commodity hardware

— Hard disks are currently the only cost-effective and
high capacity storage.

— Only focus on minimizing the disk overheads.
* Other storage systems to avoid some disk
overheads are not yet viable.

— RAM-based system will be expensive.
— Using SSD is not applicable for multi-terabyte scales.

Intermediate Data Aggregation

e The number of reduce

tasks is reduced from
M*R to R.

Enhanced the
distributed file system.

Map
Tasks

Sy

{ h(key) =2
@ _________ .

.............. by
append

append
h(key) =1

A

G
;
/
/
,
’
/
/
/
,

/ append

RAM
IFiley
h(key) =1

h(key) = R

h

IFileg
(key) =R

R times

Reduce

Tasks

Figure 3: Batching data for disk I/O (or aggregation) lowers the
overheads involved in transfer of intermediate data. Map out-
put is batched and committed to disk. The number of distinct
retrievals in the reduce phase is proportional to R.

17

4. |-files for Aggregating Intermediate Data

* Extended the KFS to implement the I-file
abstraction besides HDFS.

— KFS already contains some |-file features.
— KFS is designed for handle large files in clusters.

Adapting KFS to Support I-files

e |-files is different from KFS in:

— File chunks is append-only (primitive).
— Once a chunk is closed for writing, it is immutable.

* Setrules to I-files for data aggregation.
— Restricts the number of writers for an |-file.
— Allows multiple chunks of I-file to be appended to.

I-file APIs to support record-based I/0

e create ifile(filename)
— Creates an |-file
* record append(fd, <key, value>)
— Writes(appends) records to an I-file.
e scan(fd, buffer, lower_ key, upper_key)

— Retrieves records from an I-file.
— Data is specified by key range.

Appending Records to an I-file

1. Client send an allocate
request to KFS
metaserver to write a Metaserver)+

1. Allocate Chunk

record to an |-file. 2 Bindio C5
2. If there is an available
chunk, this server T —— T — L
. . CS4 CS;
binds the client to a

chunkserver(CS).

— If not, it allocates new
chunk.

Appending Records to an I-file

3. The client sends the

record to the bound

chunkserver. (veasorer Yo
4. When client receives T

an ACK message, client
considers it succeeds.

cs, cs,

— If fails to receive, It will ,
retry. After failing for Fleq
some time, gives up
binging to chunkserver.

5. Salifish: MapReduce Using I-files

* |tis a MapReduce framework replaced I-files
for HDFS.

* Computation Overviews

> w e

Writing map task output to I-file

Sorting and indexing I-file chunks
Determining the number of reducers
Retrieving reduce task input from an I-file

Writing map task output to I-file

Map output (I-file) is
partitioned by key.

IFiIe1: hash(key) =1

G4 Co

Each mappers append
records to designated
chunks.

IFiIe2: hash(key) =2

Chunkservers storing N
chunks serialize the

d p p en d S. Figure 5: Mappers appending their output, partitioned by key,
to Z-file chunks. Note that multiple chunks of multiple Z-files
are appended to concurrently.

Sorting and indexing I-file chunks

* Sorting of map output is decoupled from map
task execution.

— If an I-file chunk becomes stable, it is sorted and
augmented with an in-chunk index.

Determining the number of reducers

* |t tries to automatically parallelize execution.
— Calculates the number of reduce tasks from data
properties and run-time properties.
* The aim of this function is to divide reduce

phase from works and to gain amount of work
per task.

Retrieving reduce task input from an I-file

* Two reduce tasks R; &

R2 are aSSignEd I_ﬁ|e65. carrot)
* These tasks use the per- . o e e

. . IFilegs: hash(key) = 65
chunk index to retrieve

their input from chunks
C,r & C,qin I-file... N/

key offset key offset
apple 64326 apricot 20326
banana 521467 berry 256467

carrot 1317689 grape 856689

Figure 6: Reducers retrieving their assigned key ranges from
the chunks of an Z-file. Multiple reducer tasks are assigned
non-overlapping key ranges from a single 7-file.

27

Sailfish Implementation

Appending Map Output to I-files

Sorting Stable I-file Chunks

Determining Number of Reducers
Generating Reduce Task Input From I-files
Recovering Lost Map Task Output

Dataflow

workbuilder

I-file chunk on a
single node

i chunkserver
 (2)
(1) - (3)
..................... A1 v
iappender : i | |
---------------------- ; sl @
i chunksorter

Figure 7: Dataflow in Sailfish as it corresponds to a single I-file chunk.
The iappender and imerger are one per task. There is one workbuilder daemon per job.

29

Appending Map Output To I-files

1) Map task generate and

send each record to

iappender (chid /e
process). @ |
2) The iappender buffer o |12 h(s)k
flushes the record to ppd/) |
chunkserver. B i e @
3) The chunkserver [tk
buffer sends the ey

record to disk.

Sorting Stable I-file Chunks

4) When the chunk
becomes stable,
chunkserver will
become chunksorter.

— Performs in-memory
sorting.
5) When sorting is
finished, the
chunksorter write

sorted records to disk.

workbuilder

\

chunksorter

I-file chunk on a

single node

5| |4

Reduce
Task

31

Determining Number of Reducers

6)

A workbuilder

daemon process reads

the per-chunk indexes

from I-files in order to @ |
determine split points. - @ h(s)k
Each reduce task ppd/ E_j |
obtains its work B I e @
assignment from omoner|
workbuilder. I-file chunk on a

single node

Generating Reduce Task Input From [-files

8) The reducer startup

9)

imerger process and it
retrieves records from

the chunks of the I-file.

When the imerger
used all of indexes in
the I-file, it merges the
records and send them
to the reduce task.

\

chunksorter

I-file chunk on a
single node

& @ |

33

Recovering Lost Map Task Output

* A chunk of an I-file may be lost and the
containing records will be lost.

 To regenerate the lost data, the workbuilder
maintains additional bookkeeping information.

— When a map task executing finished, the iappender
notifies the workbuilder about written chunks.

— If a chunk is lost, workbuilder tells JobTracker to re-
run the map tasks to generate the chunk.

Disk Seek Analysis

* Disk seeks occur when map output is committed
to disk by the chunkservers.

— read back, sort, write back

* The number of disk seeks is data dependent.
— Writing: (I-files) * (chunk filesper I-file)
— Sorting: 2 (I-files)*(chunk filesper I-file)
—>Lower bound seeks: 3 (I-files) * (chunk filesper I-file

6. Evaluations

* With Synthetic Benchmark

— For evaluating the effectiveness of I-files in
aggregating intermediate data

— For studying the system effects of the Sailfish
dataflow path

e With Actual Jobs

— To evaluate representative mix of real MapReduce
jobs with real datasets

Parameter settings

Parameter Values
Map tasks per node 6
Reduce tasks per node | 6
Memory per

map/reduce task 1.5GB

Map-side sort
parameters

io.sort.mb =512
io.sort.factor = 100
io.sort.record.percent = 0.2
io.sort.spill.percent = 0.95

Parameter Values
Map tasks per node 6
Reduce tasks per node 6
Memory per

map/reduce task 512MB
Memory per iappender | 1GB
Memory per imerger 1GB

(a) Stock Hadoop

(b) Sailfish

Table 2: Parameter settings

Evaluation With Synthetic Benchmark

* Evaluated Sailfish for handling 1TB~16TB data
— Packing intermediate data in chunks
— Overheads imposed by chunksorter daemon

— System effects of aggre- gating map output on a
rack-wide basis

Changing intermediate volume

Intermediate data
scales linearly even

handling maximum of
volume(64TB).

(%)
[\

Stock Hadolop —
Sailfish

[
~ o @)
T T T

Job run-time (in Hours)
\9)

L 2 4 s 16 % o 1
Intermediate data size (TB)

Figure 8: Variation in job run-time with

the volume of intermediate data. Note that

the axes are log-scale.

Frequency of data retrivals

* Fixing the number of I-
files gained high
performance.

— The numbers of chunks
and reduce tasks per I-
file are increased.

Stock Haclloop —]
Sailfish

—_
—_ (a]
ol
T

per retrieval (in MB)

Data read by a reduce task

0.01

I 2 4 8 16 32 64 128

Intermediate data size (TB)
Figure 9: Data read per retrieval by
a reduce task with Stock Hadoop and
Sailfish.

Disk throughput

* Sailfish has twice as fast
as Stock Hadoop.

Stock Hadloop
40 ¢ Sailfish

Disk Read Throughput (MB/s)

0 OI.5 Il 1I.5 I2 2I.5 I3 3.5 4
Time (in hours)

Figure 10: Disk read throughput in the re-

duce phase with Sailfish is higher and

hence reduce phase is faster (int. data size

= 16TB).

41

Evaluation With Actual Jobs

* Classify MapReduce jobs with these taxonomy:
— Skew in map output (e.g. data compression)
— Skew in reduce input (e.g. data partition)
— Incremental computation (e.g. join)
— Big data (e.g. handling huge daily logs)
— Data explosion (e.g. ad-campaign by geo-location)

— Data reduction (e.g. statistical narrowing down)

List of experiment jobs

Job Name Job Characteristics Operators Input size | Int. data size | # of mappers # of reducers Run time
Stock Hadoop | Sailfish | Stock Hadoop | Sailfish
LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output | GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input | GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00
FILTER
SegmentExploder | Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,
FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.

43

Elapsed time of Map and Reduce

e There are between 20%

to 5x speed-ups.

900 ——

{(O() | Map
5700 ¢
é’ 600 r
& 500 r
£400 |
© 300 r

S
: il

S H S H S H S H S H S H S H

Nday Behavior Click Segment
LogCount LogProc LogRead Model Model Attribution Exploder

Figure 11: Time spent in the Map and Reduce phases of execu-
tion for the various MapReduce jobs. At scale, Sailfish (S)
outperforms Stock Hadoop (H) between 20% to a factor of 5.

Speed-up aspects

* Using I-files for aggregation
* Decoupling sorting from map task execution
* Making reduce phase dynamic

Using I-files for aggregation

* There is a substantial speedup with Sailfish for
the remaining jobs.

— better batching of intermediate data in I-files,
similar to what we observed with this benchmark.

* |[n LogProc and LogRead jobs, not speedup.

— The volume of intermediate data is relatively low.

Decoupling sorting from map task execution

40 ‘ ‘ ‘
Stock Hadoop
35 Sailfish

* In LogProc and
NdayModel jobs, skew in
map output impacted.

30 -
25
20 r
15

10

5 -

Task run-time (in minutes)

O I I I I | ep——— T 2
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Map Task #

Figure 12: Distribution of map task run
time for NdayModel job. Skew in map
output sizes affects task completion times
for both Stock Hadoop and Sailfish,
but the impact for Stock Hadoop is much
higher.

Making reduce phase dynamic

Dinamically determining
the number of reduce
tasks helps in skew
handling.

More reducers were
assigned to partitions
with large data.

5000
4500 r
4000 r
3500 r
3000 r
2500 r
2000 r
1500 r
1000 |
500

0

Data Size (in MB)

0 50 100 150 200 250 300 350 400
Partition #

~

(95)

Number of tasks
assigned to an I-file

T

)

S0 100 150 200 250 300 350 400
Partition #

(=]

Conclusions from Results

 |-files enable better batching of intermediate
data.

— Sailfish provides better scale than Stock Hadoop.

7. Related Work

* TritonSort
— Using MapReduce implementation “ThemisMR”.
— It considers a point in the small design space.

e Starfish

— Profiling has to be run to obtain suitable
parameter values.

3. Summary

 Sailfish is an alternate MapReduce framework
to aggregate intermediate data.

— Developed I-files as distributed filesystem.

Future Work

 Add a feedback loop to the reduce phase of
Sailfish to re-partition the key-boundary work.

e Evaluate mechanisms for replicating
intermediate data.

* Have I-files to provide new opportunities for

debugging (e.g. saving valuable programmer
time with reducing phase of a job).

My Impressions

Strong Points Weak Points
* Considers large-scale data * Used only limited data and
and clusters. situations (Yahoo! data set).
— Itwill be applicable to system o Not compared with other
handling larger data. frameworks than Stock
* Sailfish framework has good Hadoop.

scalability compared to
current Hadoop.

Thank you for listening

