
High	
 Performance	
 Compu2ng	

Paper	
 Review	
 	

Hiroki	
 Kanezashi	

13M38152	

1	

Reviewed	
 Paper	
 1	

Sailfish:	
 a	
 framework	
 for	
 large	
 scale	
 data	

processing	

[SoCC	
 '12	
 Proceedings	
 of	
 the	
 Third	
 ACM	
 Symposium	
 on	

Cloud	
 Compu2ng]	

	

Sriram	
 Rao1,	
 Raghu	
 Ramakrishnan1,	
 Adam	

Silberstein2,	
 Mike	
 Ovsiannikov3,	
 Damian	
 Reeves3	

1MicrosoP	
 Corp,	
 2LinkedIn,	
 3Quantcast	
 Corp	

2	

Reviewed	
 Paper	
 2	

Breaking	
 the	
 speed	
 and	
 scalability	
 Barriers	

for	
 Graph	
 explora2on	
 on	
 distributed-­‐

memory	
 machines	

[2012	
 Interna2onal	
 Conference	
 for	
 High	
 Performance	

Compu2ng,	
 Networking,	
 Storage	
 and	
 Analysis	
 (SC)]	

	

Checconi	
 F,	
 Petrini	
 F,	
 Willcock	
 J,	
 Lumsdaine	
 A,	

Choudhury	
 A.R,	
 Sabharwal	
 Y.	

IBM	
 TJ	
 Watson,	
 Yorktown	
 Heights,	
 NY,	
 USA	

3	

Reviewed	
 Paper	
 3	

Parallel	
 breadth-­‐first	
 search	
 on	
 distributed	

memory	
 systems	

[SC	
 '11	
 Proceedings	
 of	
 2011	
 Interna2onal	
 Conference	

for	
 High	
 Performance	
 Compu2ng,	
 Networking,	
 Storage	

and	
 Analysis]	

	

	
 Aydin	
 Buluç	
 and	
 Kamesh	
 Madduri	

Lawrence	
 Berkeley	
 Na2onal	
 Laboratory,	
 Berkeley,	
 CA	

4	

Summarized	
 Abstract	

•  Developed	
 Sailfish:	
 MapReduce	
 framework	
 for	

large	
 scale	
 data	
 processing.	

•  Sailfish	
 improved	
 performance	
 of	
 Hadoop	
 by	

20%	
 ~	
 5	
 2mes	
 on	
 real	
 jobs	
 and	
 datasets.	

•  Sailfish	
 design	
 enabled	
 auto-­‐tuning	

func2onality	
 that	
 changes	
 data	
 volume	
 and	

distribu2ons	
 effec2vely.	

5	

Outline	

1.  Introduc2on	

2.  Intermediate	
 Data	
 Handling	

3.  Batching	
 Data	
 I/O	

4.  I-­‐files	
 for	
 Aggrega2ng	
 Intermediate	
 Data	

5. Salifish:	
 MapReduce	
 Using	
 I-­‐files	

6.  Evalua2ons	

7.  Related	
 Work	

8.  Summary	

6	

1.	
 Introduc2on	

•  Data	
 intensive	
 compu2ng	
 applica2ons	

commonly	
 process	
 several	
 tens	
 of	
 terabytes.	

– These	
 applica2ons	
 run	
 on	
 large	
 clusters	
 by	
 using	

parallel	
 dataflow	
 graph	
 frameworks.	

– These	
 frameworks	
 enable	
 to	
 simplify	
 procedures	

like	
 task	
 scheduling,	
 handling	
 data	
 transferred	

between	
 computa2on	
 steps(intermediate	
 data).	

7	

Contribu2ons	
 of	
 this	
 paper	

•  Op2mized	
 the	
 transport	
 of	
 intermediate	
 data	

in	
 distributed	
 dataflow	
 systems.	

•  Found	
 that	
 data	
 managing	
 for	
 disk	
 I/O	
 should	

be	
 a	
 core	
 design	
 principle.	

•  Developed	
 I-­‐files	
 to	
 support	
 batching	
 of	
 data.	

•  Developed	
 and	
 demonstrated	
 Sailfish,	
 a	
 new	

MapReduce	
 framework.	

8	

2.	
 Intermediate	
 Data	
 Handling	

•  Current	
 MapReduce	
 implementa2ons	
 have	
 a	

problem	
 about	
 performance	
 while	

intermediate	
 data	
 handling.	

– For	
 example,	
 Hadoop	
 stores	
 intermediate	
 data	
 to	

RAM,	
 but	
 some2mes	
 spills	
 them	
 to	
 disk.	

9	

Current	
 Approaches	
 (Hadoop)	

1.  Handles	
 intermediate	

data	
 using	
 merge-­‐sort.	

2.  Spills	
 data	
 from	
 RAM	

to	
 a	
 file	
 on	
 disk.	

3.  The	
 map	
 task	
 merges	

the	
 spills	
 to	
 a	
 file.	

4.  Each	
 reduce	
 task	
 pull	

data	
 from	
 mappers’	

output	
 files.	

5.  Reducer	
 merges	
 data.	

10	

M*R	
 2mes	

Cost	
 of	
 handling	
 intermediate	
 data	

•  It	
 is	
 dominated	
 by	
 the	
 rate	
 at	
 which	
 data	
 can	

be	
 read	
 from	
 the	
 disk	
 subsystems.	

– Disk	
 performance	
 is	
 affected	
 by	
 the	
 amount	
 of	

data	
 read	
 per	
 the	
 number	
 of	
 disk	
 seek.	

•  If	
 memory-­‐based	
 filesystem	
 buffer	
 caches	

cannot	
 mask	
 disk	
 seeks,	
 overhead	
 of	
 them	

affects	
 throughput.	

11	

The	
 number	
 of	
 Mappers	
 and	
 Reducers	

•  There	
 are	
 many	
 mappers	
 and	
 reducers,	
 and	
 the	

number	
 of	
 dis2nct	
 retrievals	
 is	
 the	
 product	
 of	
 them.	

•  The	
 amount	
 of	
 data	
 retrieved	
 by	
 a	
 reduce	
 task	
 is	

propor2onal	
 to	
 the	
 number	
 of	
 reducer	
 tasks.	

	

Ø The	
 amount	
 of	
 data	
 read	
 per	
 disk	
 seek	
 will	

decreases	
 but	
 the	
 number	
 of	
 disk	
 seeks	
 grows	

super-­‐linearly.	

12	

Inefficiency	
 of	
 Performance	

•  Hadoop	
 performance	

degrades	
 non-­‐linearly.	

•  The	
 reason	
 is	
 disk	

overheads	
 involved	
 in	

the	
 data	
 transfer.	

13	

Linear	

Scale	

System	
 parameter	
 tuning	

•  Users	
 have	
 to	
 tune	
 system	
 parameters	
 of	
 such	

parallel	
 dataflow	
 frameworks.	

•  However,	
 many	
 programmers	
 set	
 parameters	

only	
 once	
 and	
 rarely	
 do	
 it	
 further.	

•  Data	
 volumes	
 will	
 change	
 con2nuously,	
 so	

performance	
 will	
 degrade	
 without	
 tuning.	

14	

3.	
 Batching	
 Data	
 I/O	

•  Used	
 “blocking	
 step”	
 techniques.	

– Already	
 exists	
 in	
 MapReduce,	
 SQL	
 Systems,	
 Pig	

•  Used	
 MapReduce	
 as	
 a	
 sample	
 applica2on.	

– Every	
 step	
 in	
 the	
 flow	
 is	
 blocking.	

15	

Clusters	
 for	
 data	
 intensive	
 compu2ng	

•  Using	
 commodity	
 hardware	

– Hard	
 disks	
 are	
 currently	
 the	
 only	
 cost-­‐effec2ve	
 and	

high	
 capacity	
 storage.	

– Only	
 focus	
 on	
 minimizing	
 the	
 disk	
 overheads.	

•  Other	
 storage	
 systems	
 to	
 avoid	
 some	
 disk	

overheads	
 are	
 not	
 yet	
 viable.	

– RAM-­‐based	
 system	
 will	
 be	
 expensive.	

– Using	
 SSD	
 is	
 not	
 applicable	
 for	
 mul2-­‐terabyte	
 scales.	

16	

Intermediate	
 Data	
 Aggrega2on	

•  The	
 number	
 of	
 reduce	

tasks	
 is	
 reduced	
 from	

M*R	
 to	
 R.	

•  Enhanced	
 the	

distributed	
 file	
 system.	
 	

17	

R	
 2mes	

4.	
 I-­‐files	
 for	
 Aggrega2ng	
 Intermediate	
 Data	

•  Extended	
 the	
 KFS	
 to	
 implement	
 the	
 I-­‐file	

abstrac2on	
 besides	
 HDFS.	

– KFS	
 already	
 contains	
 some	
 I-­‐file	
 features.	

– KFS	
 is	
 designed	
 for	
 handle	
 large	
 files	
 in	
 clusters.	

18	

Adap2ng	
 KFS	
 to	
 Support	
 I-­‐files	

•  I-­‐files	
 is	
 different	
 from	
 KFS	
 in:	

– File	
 chunks	
 is	
 append-­‐only	
 (primi2ve).	

– Once	
 a	
 chunk	
 is	
 closed	
 for	
 wri2ng,	
 it	
 is	
 immutable.	

•  	
 Set	
 rules	
 to	
 I-­‐files	
 for	
 data	
 aggrega2on.	

– Restricts	
 the	
 number	
 of	
 writers	
 for	
 an	
 I-­‐file.	

– Allows	
 mul2ple	
 chunks	
 of	
 I-­‐file	
 to	
 be	
 appended	
 to.	

19	

I-­‐file	
 APIs	
 to	
 support	
 record-­‐based	
 I/O	

•  create_ifile(filename)	

– Creates	
 an	
 I-­‐file	

•  record_append(fd,	
 <key,	
 value>)	

– Writes(appends)	
 records	
 to	
 an	
 I-­‐file.	

•  scan(fd,	
 buffer,	
 lower_key,	
 upper_key)	

– Retrieves	
 records	
 from	
 an	
 I-­‐file.	

– Data	
 is	
 specified	
 by	
 key	
 range.	

20	

Appending	
 Records	
 to	
 an	
 I-­‐file	

1.  Client	
 send	
 an	
 allocate	

request	
 to	
 KFS	

metaserver	
 to	
 write	
 a	

record	
 to	
 an	
 I-­‐file.	

2.  If	
 there	
 is	
 an	
 available	

chunk,	
 this	
 server	

binds	
 the	
 client	
 to	
 a	

chunkserver(CS).	

–  If	
 not,	
 it	
 allocates	
 new	

chunk.	

21	

Appending	
 Records	
 to	
 an	
 I-­‐file	

3.  The	
 client	
 sends	
 the	

record	
 to	
 the	
 bound	

chunkserver.	

4.  When	
 client	
 receives	

an	
 ACK	
 message,	
 client	

considers	
 it	
 succeeds.	

–  If	
 fails	
 to	
 receive,	
 It	
 will	

retry.	
 APer	
 failing	
 for	

some	
 2me,	
 gives	
 up	

binging	
 to	
 chunkserver.	

22	

5.	
 Salifish:	
 MapReduce	
 Using	
 I-­‐files	

•  It	
 is	
 a	
 MapReduce	
 framework	
 replaced	
 I-­‐files	

for	
 HDFS.	

•  Computa2on	
 Overviews	

1.  Wri2ng	
 map	
 task	
 output	
 to	
 I-­‐file	

2.  Sor2ng	
 and	
 indexing	
 I-­‐file	
 chunks	

3.  Determining	
 the	
 number	
 of	
 reducers	

4.  Retrieving	
 reduce	
 task	
 input	
 from	
 an	
 I-­‐file	

23	

Wri2ng	
 map	
 task	
 output	
 to	
 I-­‐file	
 	

•  Map	
 output	
 (I-­‐file)	
 is	

par22oned	
 by	
 key.	

•  Each	
 mappers	
 append	

records	
 to	
 designated	

chunks.	

•  Chunkservers	
 storing	

chunks	
 serialize	
 the	

appends.	

24	

Sor2ng	
 and	
 indexing	
 I-­‐file	
 chunks	

•  Sor2ng	
 of	
 map	
 output	
 is	
 decoupled	
 from	
 map	

task	
 execu2on.	

–  If	
 an	
 I-­‐file	
 chunk	
 becomes	
 stable,	
 it	
 is	
 sorted	
 and	

augmented	
 with	
 an	
 in-­‐chunk	
 index.	

25	

Determining	
 the	
 number	
 of	
 reducers	

•  It	
 tries	
 to	
 automa2cally	
 parallelize	
 execu2on.	

– Calculates	
 the	
 number	
 of	
 reduce	
 tasks	
 from	
 data	

proper2es	
 and	
 run-­‐2me	
 proper2es.	

•  The	
 aim	
 of	
 this	
 func2on	
 is	
 to	
 divide	
 reduce	

phase	
 from	
 works	
 and	
 to	
 gain	
 amount	
 of	
 work	

per	
 task.	

26	

Retrieving	
 reduce	
 task	
 input	
 from	
 an	
 I-­‐file	

•  Two	
 reduce	
 tasks	
 R1	
 &	

R2	
 are	
 assigned	
 I-­‐file65.	

•  These	
 tasks	
 use	
 the	
 per-­‐
chunk	
 index	
 to	
 retrieve	

their	
 input	
 from	
 chunks	

C17	
 &	
 C18	
 in	
 I-­‐file65.	

27	

Sailfish	
 Implementa2on	

•  Appending	
 Map	
 Output	
 to	
 I-­‐files	

•  Sor2ng	
 Stable	
 I-­‐file	
 Chunks	

•  Determining	
 Number	
 of	
 Reducers	

•  Genera2ng	
 Reduce	
 Task	
 Input	
 From	
 I-­‐files	

•  Recovering	
 Lost	
 Map	
 Task	
 Output	

28	

Dataflow	

29	
Figure	
 7:	
 Dataflow	
 in	
 Sailfish	
 as	
 it	
 corresponds	
 to	
 a	
 single	
 I-­‐file	
 chunk.	

The	
 iappender	
 and	
 imerger	
 are	
 one	
 per	
 task.	
 There	
 is	
 one	
 workbuilder	
 daemon	
 per	
 job.	

Appending	
 Map	
 Output	
 To	
 I-­‐files	

1)  Map	
 task	
 generate	
 and	

send	
 each	
 record	
 to	

iappender	
 (child	

process).	

2)  The	
 iappender	
 buffer	

flushes	
 the	
 record	
 to	

chunkserver.	

3)  The	
 chunkserver	

buffer	
 sends	
 the	

record	
 to	
 disk.	

30	

Sor2ng	
 Stable	
 I-­‐file	
 Chunks	

4)  When	
 the	
 chunk	

becomes	
 stable,	

chunkserver	
 will	

become	
 chunksorter.	

–  Performs	
 in-­‐memory	

sor2ng.	

5)  When	
 sor2ng	
 is	

finished,	
 the	

chunksorter	
 write	

sorted	
 records	
 to	
 disk.	

31	

Determining	
 Number	
 of	
 Reducers	

6)  A	
 workbuilder	

daemon	
 process	
 reads	

the	
 per-­‐chunk	
 indexes	

from	
 I-­‐files	
 in	
 order	
 to	

determine	
 split	
 points.	

7)  Each	
 reduce	
 task	

obtains	
 its	
 work	

assignment	
 from	

workbuilder.	

32	

Genera2ng	
 Reduce	
 Task	
 Input	
 From	
 I-­‐files	

8)  The	
 reducer	
 startup	

imerger	
 process	
 and	
 it	

retrieves	
 records	
 from	

the	
 chunks	
 of	
 the	
 I-­‐file.	

9)  When	
 the	
 imerger	

used	
 all	
 of	
 indexes	
 in	

the	
 I-­‐file,	
 it	
 merges	
 the	

records	
 and	
 send	
 them	

to	
 the	
 reduce	
 task.	

33	

Recovering	
 Lost	
 Map	
 Task	
 Output	

•  A	
 chunk	
 of	
 an	
 I-­‐file	
 may	
 be	
 lost	
 and	
 the	

containing	
 records	
 will	
 be	
 lost.	

•  To	
 regenerate	
 the	
 lost	
 data,	
 the	
 workbuilder	

maintains	
 addi2onal	
 bookkeeping	
 informa2on.	

– When	
 a	
 map	
 task	
 execu2ng	
 finished,	
 the	
 iappender	

no2fies	
 the	
 workbuilder	
 about	
 wrixen	
 chunks.	

–  If	
 a	
 chunk	
 is	
 lost,	
 workbuilder	
 tells	
 JobTracker	
 to	
 re-­‐
run	
 the	
 map	
 tasks	
 to	
 generate	
 the	
 chunk.	

34	

Disk	
 Seek	
 Analysis	

•  Disk	
 seeks	
 occur	
 when	
 map	
 output	
 is	
 commixed	

to	
 disk	
 by	
 the	
 chunkservers.	

–  read	
 back,	
 sort,	
 write	
 back	

•  The	
 number	
 of	
 disk	
 seeks	
 is	
 data	
 dependent.	

– Wri2ng:	
 (I-­‐files)	
 *	
 (chunk	
 filesper	
 I-­‐file)	

– Sor2ng:	
 2	
 (I-­‐files)*(chunk	
 filesper	
 I-­‐file)	

→Lower	
 bound	
 seeks:	
 3	
 (I-­‐files)	
 *	
 (chunk	
 filesper	
 I-­‐file	

35	

6.	
 Evalua2ons	

•  With	
 Synthe2c	
 Benchmark	

– For	
 evalua2ng	
 the	
 effec2veness	
 of	
 I-­‐files	
 in	

aggrega2ng	
 intermediate	
 data	

– For	
 studying	
 the	
 system	
 effects	
 of	
 the	
 Sailfish	

dataflow	
 path	

•  With	
 Actual	
 Jobs	

– To	
 evaluate	
 representa2ve	
 mix	
 of	
 real	
 MapReduce	

jobs	
 with	
 real	
 datasets	

36	

Parameter	
 sezngs	

Parameter Values
Map tasks per node 6
Reduce tasks per node 6
Memory per
map/reduce task 1.5GB

io.sort.mb = 512
Map-side sort io.sort.factor = 100
parameters io.sort.record.percent = 0.2

io.sort.spill.percent = 0.95

Parameter Values
Map tasks per node 6
Reduce tasks per node 6
Memory per
map/reduce task 512MB
Memory per iappender 1GB
Memory per imerger 1GB

(a) Stock Hadoop (b) Sailfish

Table 2: Parameter settings

other Sailfish components. On each machine we run an in-
stance of a Hadoop TaskTracker, a KFS chunkserver, and 4 KFS
chunksorter daemon processes (one sorter process per drive). The
disks on each machine are used by all the software components.

Parameter Settings: We configure Stock Hadoop using pub-
lished best practices [19] along with settings from Yahoo! clusters
for the Hadoop map-side sort parameters. Table 2(a) shows the pa-
rameters we used. Due to the differences in intermediate data han-
dling, the parameter settings for Sailfish (shown in Table 2(b))
are different from Stock Hadoop. The total memory budget im-
posed by either system is similar. Finally, during the experiments
none of the nodes in the cluster incurred swapping.

SailfishNotes: For Sailfish, we use the rack-aware vari-
ant of I-files described in Section 5.4. In the experiments, we
limit the number of concurrent appenders per chunk of an I-file
to 128, enforced by having each iappender reserve 1MB of log-
ical space before it appends records to a chunk. We set the number
of I-files to be 512 (the largest possible value given our system
configuration). Choosing a large value makes Sailfish perfor-
mance less sensitive to the specific choice. Furthermore, this set-
ting relieves our users from choosing the number of I-files for their
specific job. We configure each of the chunksorter deamons to use
256MB RAM. Finally, for the merge involved in generating reducer
input, if imerger determines that the reducer input exceeds the
amount of RAM, it does an external merge. (Our implementation
for merging records is similar to that of Stock Hadoop’s.)

6.2 Evaluation With Synthetic Benchmark

In this part of the study, we evaluate Sailfish for handling in-
termediate at scale (viz., for data volumes ranging from 1TB to
64TB). We then discuss aspects of the Sailfish dataflow path as
it relates to (1) packing intermediate data in chunks, (2) overheads
imposed by chunksorter daemon, and (3) system effects of aggre-
gating map output on a rack-wide basis. We begin by describing
our synthetic benchmark program and then present the results.

6.2.1 Benchmark Description

To highlight the overheads of transporting intermediate data in iso-
lation, we implemented a synthetic MapReduce job in which, inten-
tionally, there is no job input/output. Our program, Benchmark,
performs a partitioned sort: (1) each map task generates a config-
urable number of records (namely, strings with 10-byte key, 90-
byte value over the ASCII character set), (2) the records are hash-
partitioned, sorted, and merged and then provided as input to the
reduce task, and (3) each reduce task validates its input records
and discards them. Our Benchmark is very similar to the Day-
tona Sort benchmark program that is used in data sorting competi-
tions [7]. Finally, with Benchmark, there is no skew: (1) all map
tasks generate an equal amount of data such that the keys are uni-
formly random and (2) all reduce tasks process roughly the same
number of keys.

6.2.2 Handling intermediate data at scale

For scale, we ran Benchmark while varying the volume of inter-
mediate data generated by the map tasks from 1TB to 64TB. For
both Stock Hadoop and Sailfish, we configure the number of
mapper tasks such that each mapper generates 1GB of output. For
the reduce phase, (1) with Stock Hadoop we provide a value for the
number of reduce tasks and (2) with Sailfish we configure the
workbuilder process to assign each reduce task approximately
1GB of data. In the experiments, the number of map/reduce tasks
varied from 1024 (for handling 1TB of data) to 65536 (for handling
64TB of data).

Figure 8 shows the results of our experiments. A key takeaway
from this graph is that the performance of Sailfish for handling
intermediate data scales linearly even upto large volumes of data
(viz., 64TB). On the other hand, the performance of Stock Hadoop
grows non-linearly as the volume of intermediate data to be trans-
ported begins to exceed 16TB.

The following discussion focusses on the system characteristics
during the reduce phase of execution. We defer the discussion of
the map phase of execution to Section 6.2.5.

Recall that, in this set of experiments, the amount of input data
to a reduce task is approximately 1GB. Based on the parameter
settings, the reducer input fits entirely in RAM. Furthermore, in
both systems, a reducer retrieves its input from the multiple sources
concurrently: with Stock Hadoop, a reduce task obtains its input
multiple mapper machines (viz., 30 by default) in parallel; with
Sailfish, an imerger issues concurrent reads to all the chunks
of the I-file. However, the difference between the two systems is in
the efficiency with which the reduce task obtains its input, namely,
the amount of data read per seek which effectively determines the
disk throughput that can be achieved.

For Stock Hadoop, Section 2.2 details why data retrieved per
I/O shrinks and why this hurts its performance: the amount of
data a reducer pulls from a mapper, on average, is (1GB/R). For
Sailfish, since the number of I-files is fixed (i.e., 512), there
is an increase in both the number of chunks in an I-file as well
as the number of reduce tasks assigned to a given I-file. While
the amount of data consumed by a reduce task is fixed (namely,
1GB), this data is spread over almost all the chunks of the I-file.
Consequently, the amount of data retrieved per I/O by a reduce
task from a single I-file chunk begins to decrease. However, due
to better batching (see Section 6.2.3), the amount of data read per
I/O with Sailfish is an order of magnitude higher when com-
pared to Stock Hadoop (see Figure 9). The difference in the amount
of data read per seek translates to higher disk read throughput for
Sailfish in the reduce phase leading to better job performance.
We highlight this effect next.

Figure 10 shows the disk throughput obtained with Stock Hadoop
as well as Sailfish for runs of Benchmark in which the vol-
ume of intermediate data is 16TB. Given our 1GB limit of data for
each map or reducer task, this job involved executing 16384 map-
pers and 16384 reducers. For Stock Hadoop, the average amount
data retrieved by a reducer from a map task is about 70KB. For
Sailfish, the average amount data retrieved by a reducer from
an I-file chunk is about 1.5MB. With fewer seeks and higher amount
of data read per seek, the disk read throughput obtained by Sailfish
on a single machine averages to about 35MB/s. On the other hand,
with Stock Hadoop, due to higher seeks and less amount of data
read per seek, the observed disk throughput averages to about 20MB/s.
As a result, this effect causes the reduce phase in Stock Hadoop
to be substantially longer when compared to Sailfish’s reduce
phase for the same job (viz., 3.5 hours when compared to 1.75
hours).

37	

Evalua2on	
 With	
 Synthe2c	
 Benchmark	

•  Evaluated	
 Sailfish	
 for	
 handling	
 1TB~16TB	
 data	

– Packing	
 intermediate	
 data	
 in	
 chunks	
 	

– Overheads	
 imposed	
 by	
 chunksorter	
 daemon	
 	

– System	
 effects	
 of	
 aggre-­‐	
 ga2ng	
 map	
 output	
 on	
 a	

rack-­‐wide	
 basis	

38	

Changing	
 intermediate	
 volume	

•  Intermediate	
 data	

scales	
 linearly	
 even	

handling	
 maximum	
 of	

volume(64TB).	

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32 64 128

Jo
b
 r

u
n
-t

im
e

(i
n
 H

o
u
rs

)

Intermediate data size (TB)

Stock Hadoop
Sailfish

Figure 8: Variation in job run-time with
the volume of intermediate data. Note that
the axes are log-scale.

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128

D
at

a
re

ad
 b

y
 a

 r
ed

u
ce

 t
as

k
 p

er
 r

et
ri

ev
al

 (
in

 M
B

)

Intermediate data size (TB)

Stock Hadoop
Sailfish

Figure 9: Data read per retrieval by
a reduce task with Stock Hadoop and
Sailfish.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

D
is

k
 R

ea
d

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Time (in hours)

Stock Hadoop
Sailfish

Figure 10: Disk read throughput in the re-
duce phase with Sailfish is higher and
hence reduce phase is faster (int. data size
= 16TB).

Note that our implementation of Sailfish can be tuned fur-
ther. For instance, rather than sorting individual chunks when they
become stable, multiple chunks can be locally aggregated and sorted.
This optimization increases the length of the “sorted runs” which
can lead to better scale/performance. That is, when compared to
Figure 9, this optimization can increase the data read per retrieval
at larger values of intermediate data size.

Finally, there is also the issue of implementation differences be-
tween the two systems when transporting intermediate data. Based
on the above results (coupled with the observation that there is no
data skew), much of the gains in Sailfish are due to better disk
I/O in the reduce phase. Therefore, unless the I/O sizes in both
systems are comparable, we do not believe the implementation dif-
ferences have a significant impact on performance.

6.2.3 Effectiveness of I-files

For a given I-file our atomic record append implementation tries
to minimize the number of chunks required for storing the interme-
diate data. The experimental results validated the implementation.
The chunk allocation policy ensured that the number of chunks per
I-file was close to optimal (i.e., size of I-file /KFS chunksize).
Furthermore, except for the last chunk of an I-file, the remaining
chunks were over 99% full. This is key to our strategy of maximiz-
ing batching: a metric discussed in Section 4.2.4 was the number
of files used to store intermediate data.

6.2.4 Chunk sorting overheads

For I-files, whenever a chunk becomes stable, the chunkserver
utilizes the chunksorter daemon to sort the records in the chunk.
The chunksorter daemon is I/O intensive and performs largely se-
quential I/O: First, it spends approximately 2-4 seconds loading a
128MB chunk of data into RAM. Second, it spends approximately
1-2 seconds sorting the keys using a radix trie algorithm. Finally, it
spends approximately 2-4 seconds writing the sorted data back to
disk4.

6.2.5 Impact of network-based aggregation

The improvements in the reduce phase of execution with Sailfish
come at the expense of an additional network transfer. During the
map phase, in Stock Hadoop, a map task writes its output to the
local filesystem’s buffer cache (which writes the data to disk asyn-
chronously). With Sailfish, the map output is committed to
RAM on remote machines (and the chunkserver aggregates and

4Since writing out the sorter output file is a large sequential
I/O, as a performance optimization, our implementation uses the
posix_fallocate()API for contiguous disk space allocation.

writes to disk asynchronously). This additional network transfer
causes the map phase of execution to be higher by about 10%.

From a practical standpoint, aggregating map output on per-rack
basis (see Section 5.4) minimizes the impact of the additional traf-
fic on the network for two reasons. First, clusters for data inten-
sive computing are configured with higher intra-rack connectivity
when compared to inter-rack capacity. For instance, in Yahoo!’s
clusters, the connectivity is 1Gbps between any pair of intra-rack
nodes when compared to 200Mbps between inter-rack nodes. Sec-
ond, due to locality optimizations in the Hadoop job scheduler (i.e.,
schedule tasks where the data is stored) the intra-rack capacity is
relatively unused and Sailfish leverages the unused capacity.

Finally, network capacity within the datacenter is slated to sub-
stantially increase over the next few years. Clusters with 10Gbps
inter-node connectivity (on a small scale) have been deployed [25];
larger clusters with such connectivity will be commonplace. We ex-
pect Sailfish to be deployed in such settings, where maximiz-
ing the achievable disk subystem bandwidth and in turn effectively
utilizing the available network bandwidth becomes paramount.

6.3 Evaluation With Actual Jobs

For this part of the study we first construct a job mix by develop-
ing a simple taxonomy for classifying Map-Reduce jobs in general.
Our taxonomy is based on an analysis of jobs we see in Yahoo!’s
clusters (see Section 6.3.1). Using this taxonomy, we handpicked
a representative mix of jobs to drive an evaluation using actual
datasets and jobs (from data mining, data analytics pipelines) run
in production clusters at Yahoo!. We then present the results of our
evaluation.

6.3.1 Constructing a Job Mix

Based on conversations with our users as well as an analysis of our
cluster workloads, we use the following taxonomy for classifying
MapReduce jobs in general:

1. Skew in map output: Data compression is commonly used
in practice, and users organize their data so as to obtain high
compression ratios. As a result, the number of input records
processed by various map tasks can be substantially different,
and this impacts the size of the output of the task.

2. Skew in reduce input: These are jobs for which some parti-
tions get more data than others. The causes for skew include
poor choice of partitioning function, low entropy in keys, etc.

3. Incremental computation: Incremental computation is a
commonly used paradigm in data intensive computing en-
vironments. A typical use case is creating a sliding window

39	

Frequency	
 of	
 data	
 retrivals	

•  Fixing	
 the	
 number	
 of	
 I-­‐
files	
 gained	
 high	

performance.	

–  The	
 numbers	
 of	
 chunks	

and	
 reduce	
 tasks	
 per	
 I-­‐
file	
 are	
 increased.	

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32 64 128

Jo
b

 r
u
n

-t
im

e
(i

n
 H

o
u

rs
)

Intermediate data size (TB)

Stock Hadoop
Sailfish

Figure 8: Variation in job run-time with
the volume of intermediate data. Note that
the axes are log-scale.

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128

D
at

a
re

ad
 b

y
 a

 r
ed

u
ce

 t
as

k
 p

er
 r

et
ri

ev
al

 (
in

 M
B

)

Intermediate data size (TB)

Stock Hadoop
Sailfish

Figure 9: Data read per retrieval by
a reduce task with Stock Hadoop and
Sailfish.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

D
is

k
 R

ea
d
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Time (in hours)

Stock Hadoop
Sailfish

Figure 10: Disk read throughput in the re-
duce phase with Sailfish is higher and
hence reduce phase is faster (int. data size
= 16TB).

Note that our implementation of Sailfish can be tuned fur-
ther. For instance, rather than sorting individual chunks when they
become stable, multiple chunks can be locally aggregated and sorted.
This optimization increases the length of the “sorted runs” which
can lead to better scale/performance. That is, when compared to
Figure 9, this optimization can increase the data read per retrieval
at larger values of intermediate data size.

Finally, there is also the issue of implementation differences be-
tween the two systems when transporting intermediate data. Based
on the above results (coupled with the observation that there is no
data skew), much of the gains in Sailfish are due to better disk
I/O in the reduce phase. Therefore, unless the I/O sizes in both
systems are comparable, we do not believe the implementation dif-
ferences have a significant impact on performance.

6.2.3 Effectiveness of I-files

For a given I-file our atomic record append implementation tries
to minimize the number of chunks required for storing the interme-
diate data. The experimental results validated the implementation.
The chunk allocation policy ensured that the number of chunks per
I-file was close to optimal (i.e., size of I-file /KFS chunksize).
Furthermore, except for the last chunk of an I-file, the remaining
chunks were over 99% full. This is key to our strategy of maximiz-
ing batching: a metric discussed in Section 4.2.4 was the number
of files used to store intermediate data.

6.2.4 Chunk sorting overheads

For I-files, whenever a chunk becomes stable, the chunkserver
utilizes the chunksorter daemon to sort the records in the chunk.
The chunksorter daemon is I/O intensive and performs largely se-
quential I/O: First, it spends approximately 2-4 seconds loading a
128MB chunk of data into RAM. Second, it spends approximately
1-2 seconds sorting the keys using a radix trie algorithm. Finally, it
spends approximately 2-4 seconds writing the sorted data back to
disk4.

6.2.5 Impact of network-based aggregation

The improvements in the reduce phase of execution with Sailfish
come at the expense of an additional network transfer. During the
map phase, in Stock Hadoop, a map task writes its output to the
local filesystem’s buffer cache (which writes the data to disk asyn-
chronously). With Sailfish, the map output is committed to
RAM on remote machines (and the chunkserver aggregates and

4Since writing out the sorter output file is a large sequential
I/O, as a performance optimization, our implementation uses the
posix_fallocate()API for contiguous disk space allocation.

writes to disk asynchronously). This additional network transfer
causes the map phase of execution to be higher by about 10%.

From a practical standpoint, aggregating map output on per-rack
basis (see Section 5.4) minimizes the impact of the additional traf-
fic on the network for two reasons. First, clusters for data inten-
sive computing are configured with higher intra-rack connectivity
when compared to inter-rack capacity. For instance, in Yahoo!’s
clusters, the connectivity is 1Gbps between any pair of intra-rack
nodes when compared to 200Mbps between inter-rack nodes. Sec-
ond, due to locality optimizations in the Hadoop job scheduler (i.e.,
schedule tasks where the data is stored) the intra-rack capacity is
relatively unused and Sailfish leverages the unused capacity.

Finally, network capacity within the datacenter is slated to sub-
stantially increase over the next few years. Clusters with 10Gbps
inter-node connectivity (on a small scale) have been deployed [25];
larger clusters with such connectivity will be commonplace. We ex-
pect Sailfish to be deployed in such settings, where maximiz-
ing the achievable disk subystem bandwidth and in turn effectively
utilizing the available network bandwidth becomes paramount.

6.3 Evaluation With Actual Jobs

For this part of the study we first construct a job mix by develop-
ing a simple taxonomy for classifying Map-Reduce jobs in general.
Our taxonomy is based on an analysis of jobs we see in Yahoo!’s
clusters (see Section 6.3.1). Using this taxonomy, we handpicked
a representative mix of jobs to drive an evaluation using actual
datasets and jobs (from data mining, data analytics pipelines) run
in production clusters at Yahoo!. We then present the results of our
evaluation.

6.3.1 Constructing a Job Mix

Based on conversations with our users as well as an analysis of our
cluster workloads, we use the following taxonomy for classifying
MapReduce jobs in general:

1. Skew in map output: Data compression is commonly used
in practice, and users organize their data so as to obtain high
compression ratios. As a result, the number of input records
processed by various map tasks can be substantially different,
and this impacts the size of the output of the task.

2. Skew in reduce input: These are jobs for which some parti-
tions get more data than others. The causes for skew include
poor choice of partitioning function, low entropy in keys, etc.

3. Incremental computation: Incremental computation is a
commonly used paradigm in data intensive computing en-
vironments. A typical use case is creating a sliding window

40	

Disk	
 throughput	

•  Sailfish	
 has	
 twice	
 as	
 fast	

as	
 Stock	
 Hadoop.	

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32 64 128

Jo
b
 r

u
n
-t

im
e

(i
n
 H

o
u

rs
)

Intermediate data size (TB)

Stock Hadoop
Sailfish

Figure 8: Variation in job run-time with
the volume of intermediate data. Note that
the axes are log-scale.

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128

D
at

a
re

ad
 b

y
 a

 r
ed

u
ce

 t
as

k
 p

er
 r

et
ri

ev
al

 (
in

 M
B

)

Intermediate data size (TB)

Stock Hadoop
Sailfish

Figure 9: Data read per retrieval by
a reduce task with Stock Hadoop and
Sailfish.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

D
is

k
 R

ea
d
 T

h
ro

u
g
h
p
u
t

(M
B

/s
)

Time (in hours)

Stock Hadoop
Sailfish

Figure 10: Disk read throughput in the re-
duce phase with Sailfish is higher and
hence reduce phase is faster (int. data size
= 16TB).

Note that our implementation of Sailfish can be tuned fur-
ther. For instance, rather than sorting individual chunks when they
become stable, multiple chunks can be locally aggregated and sorted.
This optimization increases the length of the “sorted runs” which
can lead to better scale/performance. That is, when compared to
Figure 9, this optimization can increase the data read per retrieval
at larger values of intermediate data size.

Finally, there is also the issue of implementation differences be-
tween the two systems when transporting intermediate data. Based
on the above results (coupled with the observation that there is no
data skew), much of the gains in Sailfish are due to better disk
I/O in the reduce phase. Therefore, unless the I/O sizes in both
systems are comparable, we do not believe the implementation dif-
ferences have a significant impact on performance.

6.2.3 Effectiveness of I-files

For a given I-file our atomic record append implementation tries
to minimize the number of chunks required for storing the interme-
diate data. The experimental results validated the implementation.
The chunk allocation policy ensured that the number of chunks per
I-file was close to optimal (i.e., size of I-file /KFS chunksize).
Furthermore, except for the last chunk of an I-file, the remaining
chunks were over 99% full. This is key to our strategy of maximiz-
ing batching: a metric discussed in Section 4.2.4 was the number
of files used to store intermediate data.

6.2.4 Chunk sorting overheads

For I-files, whenever a chunk becomes stable, the chunkserver
utilizes the chunksorter daemon to sort the records in the chunk.
The chunksorter daemon is I/O intensive and performs largely se-
quential I/O: First, it spends approximately 2-4 seconds loading a
128MB chunk of data into RAM. Second, it spends approximately
1-2 seconds sorting the keys using a radix trie algorithm. Finally, it
spends approximately 2-4 seconds writing the sorted data back to
disk4.

6.2.5 Impact of network-based aggregation

The improvements in the reduce phase of execution with Sailfish
come at the expense of an additional network transfer. During the
map phase, in Stock Hadoop, a map task writes its output to the
local filesystem’s buffer cache (which writes the data to disk asyn-
chronously). With Sailfish, the map output is committed to
RAM on remote machines (and the chunkserver aggregates and

4Since writing out the sorter output file is a large sequential
I/O, as a performance optimization, our implementation uses the
posix_fallocate()API for contiguous disk space allocation.

writes to disk asynchronously). This additional network transfer
causes the map phase of execution to be higher by about 10%.

From a practical standpoint, aggregating map output on per-rack
basis (see Section 5.4) minimizes the impact of the additional traf-
fic on the network for two reasons. First, clusters for data inten-
sive computing are configured with higher intra-rack connectivity
when compared to inter-rack capacity. For instance, in Yahoo!’s
clusters, the connectivity is 1Gbps between any pair of intra-rack
nodes when compared to 200Mbps between inter-rack nodes. Sec-
ond, due to locality optimizations in the Hadoop job scheduler (i.e.,
schedule tasks where the data is stored) the intra-rack capacity is
relatively unused and Sailfish leverages the unused capacity.

Finally, network capacity within the datacenter is slated to sub-
stantially increase over the next few years. Clusters with 10Gbps
inter-node connectivity (on a small scale) have been deployed [25];
larger clusters with such connectivity will be commonplace. We ex-
pect Sailfish to be deployed in such settings, where maximiz-
ing the achievable disk subystem bandwidth and in turn effectively
utilizing the available network bandwidth becomes paramount.

6.3 Evaluation With Actual Jobs

For this part of the study we first construct a job mix by develop-
ing a simple taxonomy for classifying Map-Reduce jobs in general.
Our taxonomy is based on an analysis of jobs we see in Yahoo!’s
clusters (see Section 6.3.1). Using this taxonomy, we handpicked
a representative mix of jobs to drive an evaluation using actual
datasets and jobs (from data mining, data analytics pipelines) run
in production clusters at Yahoo!. We then present the results of our
evaluation.

6.3.1 Constructing a Job Mix

Based on conversations with our users as well as an analysis of our
cluster workloads, we use the following taxonomy for classifying
MapReduce jobs in general:

1. Skew in map output: Data compression is commonly used
in practice, and users organize their data so as to obtain high
compression ratios. As a result, the number of input records
processed by various map tasks can be substantially different,
and this impacts the size of the output of the task.

2. Skew in reduce input: These are jobs for which some parti-
tions get more data than others. The causes for skew include
poor choice of partitioning function, low entropy in keys, etc.

3. Incremental computation: Incremental computation is a
commonly used paradigm in data intensive computing en-
vironments. A typical use case is creating a sliding window

41	

Evalua2on	
 With	
 Actual	
 Jobs	

•  Classify	
 MapReduce	
 jobs	
 with	
 these	
 taxonomy:	

– Skew	
 in	
 map	
 output	
 (e.g.	
 data	
 compression)	

– Skew	
 in	
 reduce	
 input	
 (e.g.	
 data	
 par22on)	

–  Incremental	
 computa2on	
 (e.g.	
 join)	

– Big	
 data	
 (e.g.	
 handling	
 huge	
 daily	
 logs)	

– Data	
 explosion	
 (e.g.	
 ad-­‐campaign	
 by	
 geo-­‐loca2on)	

– Data	
 reduc2on	
 (e.g.	
 sta2s2cal	
 narrowing	
 down)	

42	

List	
 of	
 experiment	
 jobs	

Job Name Job Characteristics Operators Input size Int. data size # of mappers # of reducers Run time
Stock Hadoop Sailfish Stock Hadoop Sailfish

LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00

FILTER

SegmentExploder Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,

FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
as

k
 r

u
n

-t
im

e
(i

n
 m

in
u

te
s)

Map Task #

Stock Hadoop
Sailfish

Figure 12: Distribution of map task run
time for NdayModel job. Skew in map
output sizes affects task completion times
for both Stock Hadoop and Sailfish,
but the impact for Stock Hadoop is much
higher.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250 300 350 400

D
at

a
S

iz
e

(i
n

 M
B

)

Partition #

Figure 13: Distribution of the size of the
intermediate data files in LogRead job.
For this job there is a skew in distribution
of data across partitions (i.e., skew in re-
ducer input).

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300 350 400

N
u

m
b

er
 o

f
ta

sk
s

 a
ss

ig
n

ed
 t

o
 a

n
 I

-f
il

e

Partition #

Figure 14: For the LogRead job
Sailfish handles skew in interme-
diate data by assigning reduce tasks in
proportion to the data in the I-file (see
Figure 13).

6.3.3 Impact of data loss in I-files

In our setting the intermediate data is not replicated: Stock Hadoop
does not implement it and for a fair comparison, we did not enable
replication for I-files. Hence, in the event of data loss (viz., caused
by a disk failure), the lost data has to be regenerated via recompu-
tation. When a disk fails, the required recomputations on the two
systems are:

• Stock Hadoop: Since map tasks store their output on the local
disks by arbitrarily choosing a drive, the expected number of

recomputes is: # of tasks run on a node
of drives on a node .

• Sailfish: With 512 I-files and 30 machines per rack,
with per-rack I-files, a map task running on a node will write
to all the chunkservers in the rack. Since a chunkserver on
a node arbitrarily chooses a drive to store a chunk file, the

expected number of recomputes is: # of tasks run on a rack
of drives on a node .

Though these recompute tasks can be run in parallel, their effect
on job runtimes is data dependent. For jobs where there is a skew
in map output, the cost of recompute with Stock Hadoop is much
higher than Sailfish. For instance, for the LogProc job in
which over 90% of the job run-time is in the map phase of com-
putation, recomputes can cause the overall job run-time to nearly
double: The run-time with Stock Hadoop increases from 2 :18 to
4 :06, while with Sailfish it increases from 0 :42 to 1 :08. For
the other jobs where there is no skew in map output, regenerating
the lost data requires about 1 to 2 waves of map task execution
which causes a 10-20% increase in job runtime in either system.

7 Related Work

The performance of Hadoop Map-Reduce framework has been stud-
ied recently [16, 22, 27]. In [22], they find that Hadoop job perfor-
mance is affected by factors such as, lack of a schema which im-
pacts selection queries, lack of an index which affects join perfor-
mance, and data parsing overheads. Reference [12] shows how to
improve Hadoop performance by augmenting data with a schema
as well as an index and then using the augmented information to
substantially speed up select/join operators. These mechanisms are
applicable with Sailfish as well. In [16], they identify addi-
tional factors that affect Hadoop performance such as, I/O mode
for accessing data from disk, and task scheduling. The paper also
describes ways to tune these factors to improve performance by 2.5
to 3.5x. The same paper also notes that another potential source
of performance improvement is in modifying how the intermedi-
ate data is handled. Our work addresses this aspect and our results
demonstrate substantial gains.

TritonSort [24, 25] was developed for doing large-scale data sort-
ing. Recently, in an effort that parallels our Sailfish work, the
TritonSort architecture has been extended with a Map-Reduce im-
plementation called ThemisMR [23]. While an experimental com-
parison of the two systems is outside the scope of this paper, we
briefly describe the ThemisMR design and then contrast it with
Sailfish. The design goals of ThemisMR are similar to some
our objectives in building Sailfish: (1) ThemisMR focuses on
optimizing disk subsystem performance when handling intermedi-
ate data at scale and (2) ThemisMR tries to mitigate skew in reducer
input. With ThemisMR, a Map-Reduce computation consists of
two distinct phases, namely map and shuffle followed by sort and

43	

Elapsed	
 2me	
 of	
 Map	
 and	
 Reduce	

•  There	
 are	
 between	
 20%	

to	
 5x	
 speed-­‐ups.	

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

S H S H S H S H S H S H S H

T
im

e
(i

n
 m

in
u

te
s)

Reduce
Map

Segment
Exploder

Click
Attribution

Behavior
Model

Nday
ModelLogReadLogProcLogCount

Figure 11: Time spent in the Map and Reduce phases of execu-
tion for the various MapReduce jobs. At scale, Sailfish (S)
outperforms Stock Hadoop (H) between 20% to a factor of 5.

over a dataset. For instance, for behavioral targeting, N -day
models of user behavior are created by a key-based join of a
1-day model with the previous N -day model.

4. Big data: These are data mining jobs that process vast amounts
of data, e.g., jobs that process a day of server logs (where the
daily log volume is about 5TB in size). With these jobs, the
output is proportional to the input (i.e., for each input record,
the job generates an output record of proportional size).

5. Data explosion: These are jobs for which the output of the
map step is a multiple of the input size. For instance, to
analyze the effectiveness of an online ad-campaign by geo-
location (e.g., impressions by (1) country, (2) state, (3) city),
the map task emits multiple records for each input record.

6. Data reduction: These are jobs in which the computation
involves a data reduction step which causes the intermediate
data size (and job output) to be a fraction of the job input.
For example, there are jobs that compute statistics over the
data by processing a few TB of input but producing only a
few GB of output.

Table 3 shows the jobs that we handpicked for our evaluation. We
note that several of these are Pig scripts containing joins and co-
grouping, and produce large amounts of intermediate data. Of these
jobs, BehaviorModel, ClickAttribution are CPU and data inten-
sive, while the rest are data intensive. Finally, note that in all of
these jobs, with the exception of LogCount, there is no reduction
in the intermediate data size when compared to the job input’s size.

6.3.2 Evaluation With Representative Jobs

Hadoop best practices [19] recommend using compression to min-
imize the amount of I/O when handling intermediate data. Hence,
for this set of experiments, for handling intermediate data we en-
abled LZO-based compression with Stock Hadoop and extended
our Sailfish implementation to support an LZO codec.

Table 3 shows the data volumes for the various jobs as well
as the number of map/reduce tasks. Note that multiple waves of
map/reduce tasks per job is common.

For this set of experiments, the workbuilder was configured
to assign upto 2GB of data per reduce task (independent of the
job). This value represents a trade-off between fault-tolerance (i.e.,
amount of computation that has to be re-done when a reducer fails)
versus performance (i.e., a large value implies fewer reducers, pos-
sibly improving disk performance due to larger sequential I/Os). As

part of follow-on work [8], we are exploring ways of eliminating
this parameter. This would then allow the reduce phase of execu-
tion to be adapted completely dynamically based on the available
cluster resources (viz., CPUs).

Figure 11 shows the results of running the various jobs using
Stock Hadoop as well as Sailfish. Our results show that as
the volume of intermediate data scales, job completion times with
Sailfish are between 20% to 5x faster when compared to the
same job run with Stock Hadoop. There are three aspects to the
gains:

• Using I-files for aggregation: In terms of the reduce phase
of computation, except for the LogProc and LogRead jobs
in which the volume of intermediate data is relatively low
(see Table 3), for the remaining jobs there is a substantial
speedup with Sailfish. The speedup in the reduce phase
is due to the better batching of intermediate data in I-files,
similar to what we observed with Benchmark.

• Decoupling sorting from map task execution: From our
job mix, we found that skew in map output impacted Log-
Proc and NdayModel jobs: (1) in the LogProc job, a few
of the map tasks generated as much as 30GB of data, and
(2) in the NdayModel job, which involves a JOIN of an N -
day dataset with a 1-day dataset, about half the map tasks
that processed files from the N -day dataset generated about
10GB of data while the remaining tasks generated 450MB of
data. Figure 12 shows the distribution of map task comple-
tion times for NdayModel job. While the skew affects map
task completion times in both Stock Hadoop and Sailfish,
the impact on Stock Hadoop due to the sorting overheads in-
curred by map tasks is much higher. This result validates
one of our design choices: decoupling the sort of map output
from map task execution. In these experiments, particularly
for the LogProc job, such a separation yielded upto a 5x im-
provement in application run-time.

• Making reduce phase dynamic: Dynamically determining
the number of reduce tasks and their work assignment in a
data dependent manner helps in skew handling as well as in
automatically exploiting the parallelism in the reduce phase.
We illustrate these effects using the LogRead job in which
there is a skew in the intermediate data (particularly, as Fig-
ure 13 shows, partitions 0-200 had more data than the rest—
4.5GB vs 0.5GB). As shown in Table 3 Sailfish used
more reduce tasks than Stock Hadoop (800 compared to 512),
and proportionately more reducers were assigned to those
partitions (i.e., as shown in Figure 14, with 2GB of data per
reduce task, I-file0 to I-file200 were assigned 3 reducers per
I-file while the remaining I-files were assigned 1 reducer
apiece). As a result, by better exploiting the available paral-
lelism, the reduce phase in Sailfish is much faster com-
pared to Stock Hadoop. Our approach realizes these benefits
in a seamless manner without re-partitioning the intermediate
data and simplifies program tuning.

Finally, to study the effect of change in data volume, we ran the
ClickAttribution job using Sailfish where we increased the in-
put data size (from 25% to 100%). We found that the workbuilder
deamon automatically caused the number of reduce tasks to in-
crease proportionately (i.e., from 4096 to 8192) in a data dependent
manner.

44	

Speed-­‐up	
 aspects	

•  Using	
 I-­‐files	
 for	
 aggrega2on	

•  Decoupling	
 sor2ng	
 from	
 map	
 task	
 execu2on	

•  Making	
 reduce	
 phase	
 dynamic	

45	

Using	
 I-­‐files	
 for	
 aggrega2on	

•  There	
 is	
 a	
 substan2al	
 speedup	
 with	
 Sailfish	
 for	

the	
 remaining	
 jobs.	

– bexer	
 batching	
 of	
 intermediate	
 data	
 in	
 I-­‐files,	

similar	
 to	
 what	
 we	
 observed	
 with	
 this	
 benchmark.	

•  In	
 LogProc	
 and	
 LogRead	
 jobs,	
 not	
 speedup.	

– The	
 volume	
 of	
 intermediate	
 data	
 is	
 rela2vely	
 low.	

46	

Decoupling	
 sor2ng	
 from	
 map	
 task	
 execu2on	

•  In	
 LogProc	
 and	

NdayModel	
 jobs,	
 skew	
 in	

map	
 output	
 impacted.	

Job Name Job Characteristics Operators Input size Int. data size # of mappers # of reducers Run time
Stock Hadoop Sailfish Stock Hadoop Sailfish

LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00

FILTER

SegmentExploder Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,

FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
as

k
 r

u
n

-t
im

e
(i

n
 m

in
u

te
s)

Map Task #

Stock Hadoop
Sailfish

Figure 12: Distribution of map task run
time for NdayModel job. Skew in map
output sizes affects task completion times
for both Stock Hadoop and Sailfish,
but the impact for Stock Hadoop is much
higher.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250 300 350 400

D
at

a
S

iz
e

(i
n

 M
B

)

Partition #

Figure 13: Distribution of the size of the
intermediate data files in LogRead job.
For this job there is a skew in distribution
of data across partitions (i.e., skew in re-
ducer input).

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300 350 400

N
u

m
b

er
 o

f
ta

sk
s

 a
ss

ig
n

ed
 t

o
 a

n
 I

-f
il

e

Partition #

Figure 14: For the LogRead job
Sailfish handles skew in interme-
diate data by assigning reduce tasks in
proportion to the data in the I-file (see
Figure 13).

6.3.3 Impact of data loss in I-files

In our setting the intermediate data is not replicated: Stock Hadoop
does not implement it and for a fair comparison, we did not enable
replication for I-files. Hence, in the event of data loss (viz., caused
by a disk failure), the lost data has to be regenerated via recompu-
tation. When a disk fails, the required recomputations on the two
systems are:

• Stock Hadoop: Since map tasks store their output on the local
disks by arbitrarily choosing a drive, the expected number of

recomputes is: # of tasks run on a node
of drives on a node .

• Sailfish: With 512 I-files and 30 machines per rack,
with per-rack I-files, a map task running on a node will write
to all the chunkservers in the rack. Since a chunkserver on
a node arbitrarily chooses a drive to store a chunk file, the

expected number of recomputes is: # of tasks run on a rack
of drives on a node .

Though these recompute tasks can be run in parallel, their effect
on job runtimes is data dependent. For jobs where there is a skew
in map output, the cost of recompute with Stock Hadoop is much
higher than Sailfish. For instance, for the LogProc job in
which over 90% of the job run-time is in the map phase of com-
putation, recomputes can cause the overall job run-time to nearly
double: The run-time with Stock Hadoop increases from 2 :18 to
4 :06, while with Sailfish it increases from 0 :42 to 1 :08. For
the other jobs where there is no skew in map output, regenerating
the lost data requires about 1 to 2 waves of map task execution
which causes a 10-20% increase in job runtime in either system.

7 Related Work

The performance of Hadoop Map-Reduce framework has been stud-
ied recently [16, 22, 27]. In [22], they find that Hadoop job perfor-
mance is affected by factors such as, lack of a schema which im-
pacts selection queries, lack of an index which affects join perfor-
mance, and data parsing overheads. Reference [12] shows how to
improve Hadoop performance by augmenting data with a schema
as well as an index and then using the augmented information to
substantially speed up select/join operators. These mechanisms are
applicable with Sailfish as well. In [16], they identify addi-
tional factors that affect Hadoop performance such as, I/O mode
for accessing data from disk, and task scheduling. The paper also
describes ways to tune these factors to improve performance by 2.5
to 3.5x. The same paper also notes that another potential source
of performance improvement is in modifying how the intermedi-
ate data is handled. Our work addresses this aspect and our results
demonstrate substantial gains.

TritonSort [24, 25] was developed for doing large-scale data sort-
ing. Recently, in an effort that parallels our Sailfish work, the
TritonSort architecture has been extended with a Map-Reduce im-
plementation called ThemisMR [23]. While an experimental com-
parison of the two systems is outside the scope of this paper, we
briefly describe the ThemisMR design and then contrast it with
Sailfish. The design goals of ThemisMR are similar to some
our objectives in building Sailfish: (1) ThemisMR focuses on
optimizing disk subsystem performance when handling intermedi-
ate data at scale and (2) ThemisMR tries to mitigate skew in reducer
input. With ThemisMR, a Map-Reduce computation consists of
two distinct phases, namely map and shuffle followed by sort and

47	

Making	
 reduce	
 phase	
 dynamic	

Job Name Job Characteristics Operators Input size Int. data size # of mappers # of reducers Run time

Stock Hadoop Sailfish Stock Hadoop Sailfish

LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00

FILTER

SegmentExploder Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,

FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
as

k
 r

u
n
-t

im
e

(i
n
 m

in
u
te

s)

Map Task #

Stock Hadoop
Sailfish

Figure 12: Distribution of map task run
time for NdayModel job. Skew in map
output sizes affects task completion times
for both Stock Hadoop and Sailfish,
but the impact for Stock Hadoop is much
higher.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250 300 350 400

D
at

a
S

iz
e

(i
n
 M

B
)

Partition #

Figure 13: Distribution of the size of the
intermediate data files in LogRead job.
For this job there is a skew in distribution
of data across partitions (i.e., skew in re-
ducer input).

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300 350 400

N
u
m

b
er

 o
f

ta
sk

s
 a

ss
ig

n
ed

 t
o
 a

n
 I

-f
il

e
Partition #

Figure 14: For the LogRead job
Sailfish handles skew in interme-
diate data by assigning reduce tasks in
proportion to the data in the I-file (see
Figure 13).

6.3.3 Impact of data loss in I-files

In our setting the intermediate data is not replicated: Stock Hadoop
does not implement it and for a fair comparison, we did not enable
replication for I-files. Hence, in the event of data loss (viz., caused
by a disk failure), the lost data has to be regenerated via recompu-
tation. When a disk fails, the required recomputations on the two
systems are:

• Stock Hadoop: Since map tasks store their output on the local
disks by arbitrarily choosing a drive, the expected number of

recomputes is: # of tasks run on a node
of drives on a node .

• Sailfish: With 512 I-files and 30 machines per rack,
with per-rack I-files, a map task running on a node will write
to all the chunkservers in the rack. Since a chunkserver on
a node arbitrarily chooses a drive to store a chunk file, the

expected number of recomputes is: # of tasks run on a rack
of drives on a node .

Though these recompute tasks can be run in parallel, their effect
on job runtimes is data dependent. For jobs where there is a skew
in map output, the cost of recompute with Stock Hadoop is much
higher than Sailfish. For instance, for the LogProc job in
which over 90% of the job run-time is in the map phase of com-
putation, recomputes can cause the overall job run-time to nearly
double: The run-time with Stock Hadoop increases from 2 :18 to
4 :06, while with Sailfish it increases from 0 :42 to 1 :08. For
the other jobs where there is no skew in map output, regenerating
the lost data requires about 1 to 2 waves of map task execution
which causes a 10-20% increase in job runtime in either system.

7 Related Work

The performance of Hadoop Map-Reduce framework has been stud-
ied recently [16, 22, 27]. In [22], they find that Hadoop job perfor-
mance is affected by factors such as, lack of a schema which im-
pacts selection queries, lack of an index which affects join perfor-
mance, and data parsing overheads. Reference [12] shows how to
improve Hadoop performance by augmenting data with a schema
as well as an index and then using the augmented information to
substantially speed up select/join operators. These mechanisms are
applicable with Sailfish as well. In [16], they identify addi-
tional factors that affect Hadoop performance such as, I/O mode
for accessing data from disk, and task scheduling. The paper also
describes ways to tune these factors to improve performance by 2.5
to 3.5x. The same paper also notes that another potential source
of performance improvement is in modifying how the intermedi-
ate data is handled. Our work addresses this aspect and our results
demonstrate substantial gains.

TritonSort [24, 25] was developed for doing large-scale data sort-
ing. Recently, in an effort that parallels our Sailfish work, the
TritonSort architecture has been extended with a Map-Reduce im-
plementation called ThemisMR [23]. While an experimental com-
parison of the two systems is outside the scope of this paper, we
briefly describe the ThemisMR design and then contrast it with
Sailfish. The design goals of ThemisMR are similar to some
our objectives in building Sailfish: (1) ThemisMR focuses on
optimizing disk subsystem performance when handling intermedi-
ate data at scale and (2) ThemisMR tries to mitigate skew in reducer
input. With ThemisMR, a Map-Reduce computation consists of
two distinct phases, namely map and shuffle followed by sort and

Job Name Job Characteristics Operators Input size Int. data size # of mappers # of reducers Run time
Stock Hadoop Sailfish Stock Hadoop Sailfish

LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00

FILTER

SegmentExploder Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,

FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
as

k
 r

u
n
-t

im
e

(i
n
 m

in
u
te

s)

Map Task #

Stock Hadoop
Sailfish

Figure 12: Distribution of map task run
time for NdayModel job. Skew in map
output sizes affects task completion times
for both Stock Hadoop and Sailfish,
but the impact for Stock Hadoop is much
higher.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250 300 350 400

D
at

a
S

iz
e

(i
n
 M

B
)

Partition #

Figure 13: Distribution of the size of the
intermediate data files in LogRead job.
For this job there is a skew in distribution
of data across partitions (i.e., skew in re-
ducer input).

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300 350 400

N
u
m

b
er

 o
f

ta
sk

s
 a

ss
ig

n
ed

 t
o
 a

n
 I

-f
il

e

Partition #

Figure 14: For the LogRead job
Sailfish handles skew in interme-
diate data by assigning reduce tasks in
proportion to the data in the I-file (see
Figure 13).

6.3.3 Impact of data loss in I-files

In our setting the intermediate data is not replicated: Stock Hadoop
does not implement it and for a fair comparison, we did not enable
replication for I-files. Hence, in the event of data loss (viz., caused
by a disk failure), the lost data has to be regenerated via recompu-
tation. When a disk fails, the required recomputations on the two
systems are:

• Stock Hadoop: Since map tasks store their output on the local
disks by arbitrarily choosing a drive, the expected number of

recomputes is: # of tasks run on a node
of drives on a node .

• Sailfish: With 512 I-files and 30 machines per rack,
with per-rack I-files, a map task running on a node will write
to all the chunkservers in the rack. Since a chunkserver on
a node arbitrarily chooses a drive to store a chunk file, the

expected number of recomputes is: # of tasks run on a rack
of drives on a node .

Though these recompute tasks can be run in parallel, their effect
on job runtimes is data dependent. For jobs where there is a skew
in map output, the cost of recompute with Stock Hadoop is much
higher than Sailfish. For instance, for the LogProc job in
which over 90% of the job run-time is in the map phase of com-
putation, recomputes can cause the overall job run-time to nearly
double: The run-time with Stock Hadoop increases from 2 :18 to
4 :06, while with Sailfish it increases from 0 :42 to 1 :08. For
the other jobs where there is no skew in map output, regenerating
the lost data requires about 1 to 2 waves of map task execution
which causes a 10-20% increase in job runtime in either system.

7 Related Work

The performance of Hadoop Map-Reduce framework has been stud-
ied recently [16, 22, 27]. In [22], they find that Hadoop job perfor-
mance is affected by factors such as, lack of a schema which im-
pacts selection queries, lack of an index which affects join perfor-
mance, and data parsing overheads. Reference [12] shows how to
improve Hadoop performance by augmenting data with a schema
as well as an index and then using the augmented information to
substantially speed up select/join operators. These mechanisms are
applicable with Sailfish as well. In [16], they identify addi-
tional factors that affect Hadoop performance such as, I/O mode
for accessing data from disk, and task scheduling. The paper also
describes ways to tune these factors to improve performance by 2.5
to 3.5x. The same paper also notes that another potential source
of performance improvement is in modifying how the intermedi-
ate data is handled. Our work addresses this aspect and our results
demonstrate substantial gains.

TritonSort [24, 25] was developed for doing large-scale data sort-
ing. Recently, in an effort that parallels our Sailfish work, the
TritonSort architecture has been extended with a Map-Reduce im-
plementation called ThemisMR [23]. While an experimental com-
parison of the two systems is outside the scope of this paper, we
briefly describe the ThemisMR design and then contrast it with
Sailfish. The design goals of ThemisMR are similar to some
our objectives in building Sailfish: (1) ThemisMR focuses on
optimizing disk subsystem performance when handling intermedi-
ate data at scale and (2) ThemisMR tries to mitigate skew in reducer
input. With ThemisMR, a Map-Reduce computation consists of
two distinct phases, namely map and shuffle followed by sort and

48	

•  Dinamically	
 determining	

the	
 number	
 of	
 reduce	

tasks	
 helps	
 in	
 skew	

handling.	

•  More	
 reducers	
 were	

assigned	
 to	
 par22ons	

with	
 large	
 data.	

Conclusions	
 from	
 Results	

•  I-­‐files	
 enable	
 bexer	
 batching	
 of	
 intermediate	

data.	

– Sailfish	
 provides	
 bexer	
 scale	
 than	
 Stock	
 Hadoop.	

49	

7.	
 Related	
 Work	

•  TritonSort	

– Using	
 MapReduce	
 implementa2on	
 “ThemisMR”.	

–  It	
 considers	
 a	
 point	
 in	
 the	
 small	
 design	
 space.	

•  Starfish	

– Profiling	
 has	
 to	
 be	
 run	
 to	
 obtain	
 suitable	

parameter	
 values.	

50	

8.	
 Summary	

•  Sailfish	
 is	
 an	
 alternate	
 MapReduce	
 framework	

to	
 aggregate	
 intermediate	
 data.	

– Developed	
 I-­‐files	
 as	
 distributed	
 filesystem.	

51	

Future	
 Work	

•  Add	
 a	
 feedback	
 loop	
 to	
 the	
 reduce	
 phase	
 of	

Sailfish	
 to	
 re-­‐par22on	
 the	
 key-­‐boundary	
 work.	

•  Evaluate	
 mechanisms	
 for	
 replica2ng	

intermediate	
 data.	

•  Have	
 I-­‐files	
 to	
 provide	
 new	
 opportuni2es	
 for	

debugging	
 (e.g.	
 saving	
 valuable	
 programmer	

2me	
 with	
 reducing	
 phase	
 of	
 a	
 job).	

52	

My	
 Impressions	

Strong	
 Points	

•  Considers	
 large-­‐scale	
 data	

and	
 clusters.	

–  It	
 will	
 be	
 applicable	
 to	
 system	

handling	
 larger	
 data.	

•  Sailfish	
 framework	
 has	
 good	

scalability	
 compared	
 to	

current	
 Hadoop.	

Weak	
 Points	

•  Used	
 only	
 limited	
 data	
 and	

situa2ons	
 (Yahoo!	
 data	
 set).	

•  Not	
 compared	
 with	
 other	

frameworks	
 than	
 Stock	

Hadoop.	

53	

Thank	
 you	
 for	
 listening	

54	

