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Summarized	
  Abstract	


•  Developed	
  Sailfish:	
  MapReduce	
  framework	
  for	
  
large	
  scale	
  data	
  processing.	
  

•  Sailfish	
  improved	
  performance	
  of	
  Hadoop	
  by	
  
20%	
  ~	
  5	
  2mes	
  on	
  real	
  jobs	
  and	
  datasets.	
  

•  Sailfish	
  design	
  enabled	
  auto-­‐tuning	
  
func2onality	
  that	
  changes	
  data	
  volume	
  and	
  
distribu2ons	
  effec2vely.	
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1.	
  Introduc2on	


•  Data	
  intensive	
  compu2ng	
  applica2ons	
  
commonly	
  process	
  several	
  tens	
  of	
  terabytes.	
  
– These	
  applica2ons	
  run	
  on	
  large	
  clusters	
  by	
  using	
  
parallel	
  dataflow	
  graph	
  frameworks.	
  

– These	
  frameworks	
  enable	
  to	
  simplify	
  procedures	
  
like	
  task	
  scheduling,	
  handling	
  data	
  transferred	
  
between	
  computa2on	
  steps(intermediate	
  data).	
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Contribu2ons	
  of	
  this	
  paper	


•  Op2mized	
  the	
  transport	
  of	
  intermediate	
  data	
  
in	
  distributed	
  dataflow	
  systems.	
  

•  Found	
  that	
  data	
  managing	
  for	
  disk	
  I/O	
  should	
  
be	
  a	
  core	
  design	
  principle.	
  

•  Developed	
  I-­‐files	
  to	
  support	
  batching	
  of	
  data.	
  
•  Developed	
  and	
  demonstrated	
  Sailfish,	
  a	
  new	
  
MapReduce	
  framework.	
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2.	
  Intermediate	
  Data	
  Handling	


•  Current	
  MapReduce	
  implementa2ons	
  have	
  a	
  
problem	
  about	
  performance	
  while	
  
intermediate	
  data	
  handling.	
  
– For	
  example,	
  Hadoop	
  stores	
  intermediate	
  data	
  to	
  
RAM,	
  but	
  some2mes	
  spills	
  them	
  to	
  disk.	
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Current	
  Approaches	
  (Hadoop)	


1.  Handles	
  intermediate	
  
data	
  using	
  merge-­‐sort.	
  

2.  Spills	
  data	
  from	
  RAM	
  
to	
  a	
  file	
  on	
  disk.	
  

3.  The	
  map	
  task	
  merges	
  
the	
  spills	
  to	
  a	
  file.	
  

4.  Each	
  reduce	
  task	
  pull	
  
data	
  from	
  mappers’	
  
output	
  files.	
  

5.  Reducer	
  merges	
  data.	
  
10	


M*R	
  2mes	




Cost	
  of	
  handling	
  intermediate	
  data	


•  It	
  is	
  dominated	
  by	
  the	
  rate	
  at	
  which	
  data	
  can	
  
be	
  read	
  from	
  the	
  disk	
  subsystems.	
  
– Disk	
  performance	
  is	
  affected	
  by	
  the	
  amount	
  of	
  
data	
  read	
  per	
  the	
  number	
  of	
  disk	
  seek.	
  

•  If	
  memory-­‐based	
  filesystem	
  buffer	
  caches	
  
cannot	
  mask	
  disk	
  seeks,	
  overhead	
  of	
  them	
  
affects	
  throughput.	
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The	
  number	
  of	
  Mappers	
  and	
  Reducers	


•  There	
  are	
  many	
  mappers	
  and	
  reducers,	
  and	
  the	
  
number	
  of	
  dis2nct	
  retrievals	
  is	
  the	
  product	
  of	
  them.	


•  The	
  amount	
  of	
  data	
  retrieved	
  by	
  a	
  reduce	
  task	
  is	
  
propor2onal	
  to	
  the	
  number	
  of	
  reducer	
  tasks.	
  

	
  

Ø The	
  amount	
  of	
  data	
  read	
  per	
  disk	
  seek	
  will	
  
decreases	
  but	
  the	
  number	
  of	
  disk	
  seeks	
  grows	
  
super-­‐linearly.	
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Inefficiency	
  of	
  Performance	


•  Hadoop	
  performance	
  
degrades	
  non-­‐linearly.	
  

•  The	
  reason	
  is	
  disk	
  
overheads	
  involved	
  in	
  
the	
  data	
  transfer.	
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System	
  parameter	
  tuning	


•  Users	
  have	
  to	
  tune	
  system	
  parameters	
  of	
  such	
  
parallel	
  dataflow	
  frameworks.	
  

•  However,	
  many	
  programmers	
  set	
  parameters	
  
only	
  once	
  and	
  rarely	
  do	
  it	
  further.	
  

•  Data	
  volumes	
  will	
  change	
  con2nuously,	
  so	
  
performance	
  will	
  degrade	
  without	
  tuning.	
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3.	
  Batching	
  Data	
  I/O	


•  Used	
  “blocking	
  step”	
  techniques.	
  
– Already	
  exists	
  in	
  MapReduce,	
  SQL	
  Systems,	
  Pig	
  

•  Used	
  MapReduce	
  as	
  a	
  sample	
  applica2on.	
  
– Every	
  step	
  in	
  the	
  flow	
  is	
  blocking.	
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Clusters	
  for	
  data	
  intensive	
  compu2ng	


•  Using	
  commodity	
  hardware	
  
– Hard	
  disks	
  are	
  currently	
  the	
  only	
  cost-­‐effec2ve	
  and	
  
high	
  capacity	
  storage.	
  

– Only	
  focus	
  on	
  minimizing	
  the	
  disk	
  overheads.	
  

•  Other	
  storage	
  systems	
  to	
  avoid	
  some	
  disk	
  
overheads	
  are	
  not	
  yet	
  viable.	
  
– RAM-­‐based	
  system	
  will	
  be	
  expensive.	
  
– Using	
  SSD	
  is	
  not	
  applicable	
  for	
  mul2-­‐terabyte	
  scales.	
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Intermediate	
  Data	
  Aggrega2on	


•  The	
  number	
  of	
  reduce	
  
tasks	
  is	
  reduced	
  from	
  
M*R	
  to	
  R.	
  

•  Enhanced	
  the	
  
distributed	
  file	
  system.	
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4.	
  I-­‐files	
  for	
  Aggrega2ng	
  Intermediate	
  Data	


•  Extended	
  the	
  KFS	
  to	
  implement	
  the	
  I-­‐file	
  
abstrac2on	
  besides	
  HDFS.	
  
– KFS	
  already	
  contains	
  some	
  I-­‐file	
  features.	
  
– KFS	
  is	
  designed	
  for	
  handle	
  large	
  files	
  in	
  clusters.	
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Adap2ng	
  KFS	
  to	
  Support	
  I-­‐files	


•  I-­‐files	
  is	
  different	
  from	
  KFS	
  in:	
  
– File	
  chunks	
  is	
  append-­‐only	
  (primi2ve).	
  
– Once	
  a	
  chunk	
  is	
  closed	
  for	
  wri2ng,	
  it	
  is	
  immutable.	
  

•  	
  Set	
  rules	
  to	
  I-­‐files	
  for	
  data	
  aggrega2on.	
  
– Restricts	
  the	
  number	
  of	
  writers	
  for	
  an	
  I-­‐file.	
  
– Allows	
  mul2ple	
  chunks	
  of	
  I-­‐file	
  to	
  be	
  appended	
  to.	
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I-­‐file	
  APIs	
  to	
  support	
  record-­‐based	
  I/O	


•  create_ifile(filename)	
  
– Creates	
  an	
  I-­‐file	
  

•  record_append(fd,	
  <key,	
  value>)	
  
– Writes(appends)	
  records	
  to	
  an	
  I-­‐file.	
  

•  scan(fd,	
  buffer,	
  lower_key,	
  upper_key)	
  
– Retrieves	
  records	
  from	
  an	
  I-­‐file.	
  
– Data	
  is	
  specified	
  by	
  key	
  range.	
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Appending	
  Records	
  to	
  an	
  I-­‐file	


1.  Client	
  send	
  an	
  allocate	
  
request	
  to	
  KFS	
  
metaserver	
  to	
  write	
  a	
  
record	
  to	
  an	
  I-­‐file.	
  

2.  If	
  there	
  is	
  an	
  available	
  
chunk,	
  this	
  server	
  
binds	
  the	
  client	
  to	
  a	
  
chunkserver(CS).	
  
–  If	
  not,	
  it	
  allocates	
  new	
  

chunk.	
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Appending	
  Records	
  to	
  an	
  I-­‐file	


3.  The	
  client	
  sends	
  the	
  
record	
  to	
  the	
  bound	
  
chunkserver.	
  

4.  When	
  client	
  receives	
  
an	
  ACK	
  message,	
  client	
  
considers	
  it	
  succeeds.	
  
–  If	
  fails	
  to	
  receive,	
  It	
  will	
  

retry.	
  APer	
  failing	
  for	
  
some	
  2me,	
  gives	
  up	
  
binging	
  to	
  chunkserver.	
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5.	
  Salifish:	
  MapReduce	
  Using	
  I-­‐files	


•  It	
  is	
  a	
  MapReduce	
  framework	
  replaced	
  I-­‐files	
  
for	
  HDFS.	
  

•  Computa2on	
  Overviews	
  
1.  Wri2ng	
  map	
  task	
  output	
  to	
  I-­‐file	
  
2.  Sor2ng	
  and	
  indexing	
  I-­‐file	
  chunks	
  
3.  Determining	
  the	
  number	
  of	
  reducers	
  
4.  Retrieving	
  reduce	
  task	
  input	
  from	
  an	
  I-­‐file	
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Wri2ng	
  map	
  task	
  output	
  to	
  I-­‐file	
  	


•  Map	
  output	
  (I-­‐file)	
  is	
  
par22oned	
  by	
  key.	
  

•  Each	
  mappers	
  append	
  
records	
  to	
  designated	
  
chunks.	
  

•  Chunkservers	
  storing	
  
chunks	
  serialize	
  the	
  
appends.	
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Sor2ng	
  and	
  indexing	
  I-­‐file	
  chunks	


•  Sor2ng	
  of	
  map	
  output	
  is	
  decoupled	
  from	
  map	
  
task	
  execu2on.	
  
–  If	
  an	
  I-­‐file	
  chunk	
  becomes	
  stable,	
  it	
  is	
  sorted	
  and	
  
augmented	
  with	
  an	
  in-­‐chunk	
  index.	
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Determining	
  the	
  number	
  of	
  reducers	


•  It	
  tries	
  to	
  automa2cally	
  parallelize	
  execu2on.	
  
– Calculates	
  the	
  number	
  of	
  reduce	
  tasks	
  from	
  data	
  
proper2es	
  and	
  run-­‐2me	
  proper2es.	
  

•  The	
  aim	
  of	
  this	
  func2on	
  is	
  to	
  divide	
  reduce	
  
phase	
  from	
  works	
  and	
  to	
  gain	
  amount	
  of	
  work	
  
per	
  task.	
  

26	




Retrieving	
  reduce	
  task	
  input	
  from	
  an	
  I-­‐file	


•  Two	
  reduce	
  tasks	
  R1	
  &	
  
R2	
  are	
  assigned	
  I-­‐file65.	
  

•  These	
  tasks	
  use	
  the	
  per-­‐
chunk	
  index	
  to	
  retrieve	
  
their	
  input	
  from	
  chunks	
  
C17	
  &	
  C18	
  in	
  I-­‐file65.	
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Sailfish	
  Implementa2on	


•  Appending	
  Map	
  Output	
  to	
  I-­‐files	
  
•  Sor2ng	
  Stable	
  I-­‐file	
  Chunks	
  
•  Determining	
  Number	
  of	
  Reducers	
  
•  Genera2ng	
  Reduce	
  Task	
  Input	
  From	
  I-­‐files	
  
•  Recovering	
  Lost	
  Map	
  Task	
  Output	
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Dataflow	


29	
Figure	
  7:	
  Dataflow	
  in	
  Sailfish	
  as	
  it	
  corresponds	
  to	
  a	
  single	
  I-­‐file	
  chunk.	
  
The	
  iappender	
  and	
  imerger	
  are	
  one	
  per	
  task.	
  There	
  is	
  one	
  workbuilder	
  daemon	
  per	
  job.	




Appending	
  Map	
  Output	
  To	
  I-­‐files	


1)  Map	
  task	
  generate	
  and	
  
send	
  each	
  record	
  to	
  
iappender	
  (child	
  
process).	
  

2)  The	
  iappender	
  buffer	
  
flushes	
  the	
  record	
  to	
  
chunkserver.	
  

3)  The	
  chunkserver	
  
buffer	
  sends	
  the	
  
record	
  to	
  disk.	
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Sor2ng	
  Stable	
  I-­‐file	
  Chunks	


4)  When	
  the	
  chunk	
  
becomes	
  stable,	
  
chunkserver	
  will	
  
become	
  chunksorter.	
  
–  Performs	
  in-­‐memory	
  

sor2ng.	
  

5)  When	
  sor2ng	
  is	
  
finished,	
  the	
  
chunksorter	
  write	
  
sorted	
  records	
  to	
  disk.	
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Determining	
  Number	
  of	
  Reducers	


6)  A	
  workbuilder	
  
daemon	
  process	
  reads	
  
the	
  per-­‐chunk	
  indexes	
  
from	
  I-­‐files	
  in	
  order	
  to	
  
determine	
  split	
  points.	
  

7)  Each	
  reduce	
  task	
  
obtains	
  its	
  work	
  
assignment	
  from	
  
workbuilder.	
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Genera2ng	
  Reduce	
  Task	
  Input	
  From	
  I-­‐files	


8)  The	
  reducer	
  startup	
  
imerger	
  process	
  and	
  it	
  
retrieves	
  records	
  from	
  
the	
  chunks	
  of	
  the	
  I-­‐file.	
  

9)  When	
  the	
  imerger	
  
used	
  all	
  of	
  indexes	
  in	
  
the	
  I-­‐file,	
  it	
  merges	
  the	
  
records	
  and	
  send	
  them	
  
to	
  the	
  reduce	
  task.	
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Recovering	
  Lost	
  Map	
  Task	
  Output	


•  A	
  chunk	
  of	
  an	
  I-­‐file	
  may	
  be	
  lost	
  and	
  the	
  
containing	
  records	
  will	
  be	
  lost.	
  

•  To	
  regenerate	
  the	
  lost	
  data,	
  the	
  workbuilder	
  
maintains	
  addi2onal	
  bookkeeping	
  informa2on.	
  
– When	
  a	
  map	
  task	
  execu2ng	
  finished,	
  the	
  iappender	
  
no2fies	
  the	
  workbuilder	
  about	
  wrixen	
  chunks.	
  

–  If	
  a	
  chunk	
  is	
  lost,	
  workbuilder	
  tells	
  JobTracker	
  to	
  re-­‐
run	
  the	
  map	
  tasks	
  to	
  generate	
  the	
  chunk.	
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Disk	
  Seek	
  Analysis	


•  Disk	
  seeks	
  occur	
  when	
  map	
  output	
  is	
  commixed	
  
to	
  disk	
  by	
  the	
  chunkservers.	
  
–  read	
  back,	
  sort,	
  write	
  back	
  

•  The	
  number	
  of	
  disk	
  seeks	
  is	
  data	
  dependent.	
  
– Wri2ng:	
  (I-­‐files)	
  *	
  (chunk	
  filesper	
  I-­‐file)	
  
– Sor2ng:	
  2	
  (I-­‐files)*(chunk	
  filesper	
  I-­‐file)	
  
→Lower	
  bound	
  seeks:	
  3	
  (I-­‐files)	
  *	
  (chunk	
  filesper	
  I-­‐file	
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6.	
  Evalua2ons	


•  With	
  Synthe2c	
  Benchmark	
  
– For	
  evalua2ng	
  the	
  effec2veness	
  of	
  I-­‐files	
  in	
  
aggrega2ng	
  intermediate	
  data	
  

– For	
  studying	
  the	
  system	
  effects	
  of	
  the	
  Sailfish	
  
dataflow	
  path	
  

•  With	
  Actual	
  Jobs	
  
– To	
  evaluate	
  representa2ve	
  mix	
  of	
  real	
  MapReduce	
  
jobs	
  with	
  real	
  datasets	
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Parameter	
  sezngs	


Parameter Values
Map tasks per node 6
Reduce tasks per node 6
Memory per
map/reduce task 1.5GB

io.sort.mb = 512
Map-side sort io.sort.factor = 100
parameters io.sort.record.percent = 0.2

io.sort.spill.percent = 0.95

Parameter Values
Map tasks per node 6
Reduce tasks per node 6
Memory per
map/reduce task 512MB
Memory per iappender 1GB
Memory per imerger 1GB

(a) Stock Hadoop (b) Sailfish

Table 2: Parameter settings

other Sailfish components. On each machine we run an in-
stance of a Hadoop TaskTracker, a KFS chunkserver, and 4 KFS
chunksorter daemon processes (one sorter process per drive). The
disks on each machine are used by all the software components.

Parameter Settings: We configure Stock Hadoop using pub-
lished best practices [19] along with settings from Yahoo! clusters
for the Hadoop map-side sort parameters. Table 2(a) shows the pa-
rameters we used. Due to the differences in intermediate data han-
dling, the parameter settings for Sailfish (shown in Table 2(b))
are different from Stock Hadoop. The total memory budget im-
posed by either system is similar. Finally, during the experiments
none of the nodes in the cluster incurred swapping.

SailfishNotes: For Sailfish, we use the rack-aware vari-
ant of I-files described in Section 5.4. In the experiments, we
limit the number of concurrent appenders per chunk of an I-file
to 128, enforced by having each iappender reserve 1MB of log-
ical space before it appends records to a chunk. We set the number
of I-files to be 512 (the largest possible value given our system
configuration). Choosing a large value makes Sailfish perfor-
mance less sensitive to the specific choice. Furthermore, this set-
ting relieves our users from choosing the number of I-files for their
specific job. We configure each of the chunksorter deamons to use
256MB RAM. Finally, for the merge involved in generating reducer
input, if imerger determines that the reducer input exceeds the
amount of RAM, it does an external merge. (Our implementation
for merging records is similar to that of Stock Hadoop’s.)

6.2 Evaluation With Synthetic Benchmark

In this part of the study, we evaluate Sailfish for handling in-
termediate at scale (viz., for data volumes ranging from 1TB to
64TB). We then discuss aspects of the Sailfish dataflow path as
it relates to (1) packing intermediate data in chunks, (2) overheads
imposed by chunksorter daemon, and (3) system effects of aggre-
gating map output on a rack-wide basis. We begin by describing
our synthetic benchmark program and then present the results.

6.2.1 Benchmark Description

To highlight the overheads of transporting intermediate data in iso-
lation, we implemented a synthetic MapReduce job in which, inten-
tionally, there is no job input/output. Our program, Benchmark,
performs a partitioned sort: (1) each map task generates a config-
urable number of records (namely, strings with 10-byte key, 90-
byte value over the ASCII character set), (2) the records are hash-
partitioned, sorted, and merged and then provided as input to the
reduce task, and (3) each reduce task validates its input records
and discards them. Our Benchmark is very similar to the Day-
tona Sort benchmark program that is used in data sorting competi-
tions [7]. Finally, with Benchmark, there is no skew: (1) all map
tasks generate an equal amount of data such that the keys are uni-
formly random and (2) all reduce tasks process roughly the same
number of keys.

6.2.2 Handling intermediate data at scale

For scale, we ran Benchmark while varying the volume of inter-
mediate data generated by the map tasks from 1TB to 64TB. For
both Stock Hadoop and Sailfish, we configure the number of
mapper tasks such that each mapper generates 1GB of output. For
the reduce phase, (1) with Stock Hadoop we provide a value for the
number of reduce tasks and (2) with Sailfish we configure the
workbuilder process to assign each reduce task approximately
1GB of data. In the experiments, the number of map/reduce tasks
varied from 1024 (for handling 1TB of data) to 65536 (for handling
64TB of data).

Figure 8 shows the results of our experiments. A key takeaway
from this graph is that the performance of Sailfish for handling
intermediate data scales linearly even upto large volumes of data
(viz., 64TB). On the other hand, the performance of Stock Hadoop
grows non-linearly as the volume of intermediate data to be trans-
ported begins to exceed 16TB.

The following discussion focusses on the system characteristics
during the reduce phase of execution. We defer the discussion of
the map phase of execution to Section 6.2.5.

Recall that, in this set of experiments, the amount of input data
to a reduce task is approximately 1GB. Based on the parameter
settings, the reducer input fits entirely in RAM. Furthermore, in
both systems, a reducer retrieves its input from the multiple sources
concurrently: with Stock Hadoop, a reduce task obtains its input
multiple mapper machines (viz., 30 by default) in parallel; with
Sailfish, an imerger issues concurrent reads to all the chunks
of the I-file. However, the difference between the two systems is in
the efficiency with which the reduce task obtains its input, namely,
the amount of data read per seek which effectively determines the
disk throughput that can be achieved.

For Stock Hadoop, Section 2.2 details why data retrieved per
I/O shrinks and why this hurts its performance: the amount of
data a reducer pulls from a mapper, on average, is (1GB/R). For
Sailfish, since the number of I-files is fixed (i.e., 512), there
is an increase in both the number of chunks in an I-file as well
as the number of reduce tasks assigned to a given I-file. While
the amount of data consumed by a reduce task is fixed (namely,
1GB), this data is spread over almost all the chunks of the I-file.
Consequently, the amount of data retrieved per I/O by a reduce
task from a single I-file chunk begins to decrease. However, due
to better batching (see Section 6.2.3), the amount of data read per
I/O with Sailfish is an order of magnitude higher when com-
pared to Stock Hadoop (see Figure 9). The difference in the amount
of data read per seek translates to higher disk read throughput for
Sailfish in the reduce phase leading to better job performance.
We highlight this effect next.

Figure 10 shows the disk throughput obtained with Stock Hadoop
as well as Sailfish for runs of Benchmark in which the vol-
ume of intermediate data is 16TB. Given our 1GB limit of data for
each map or reducer task, this job involved executing 16384 map-
pers and 16384 reducers. For Stock Hadoop, the average amount
data retrieved by a reducer from a map task is about 70KB. For
Sailfish, the average amount data retrieved by a reducer from
an I-file chunk is about 1.5MB. With fewer seeks and higher amount
of data read per seek, the disk read throughput obtained by Sailfish
on a single machine averages to about 35MB/s. On the other hand,
with Stock Hadoop, due to higher seeks and less amount of data
read per seek, the observed disk throughput averages to about 20MB/s.
As a result, this effect causes the reduce phase in Stock Hadoop
to be substantially longer when compared to Sailfish’s reduce
phase for the same job (viz., 3.5 hours when compared to 1.75
hours).
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Figure 9: Data read per retrieval by
a reduce task with Stock Hadoop and
Sailfish.
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Figure 10: Disk read throughput in the re-
duce phase with Sailfish is higher and
hence reduce phase is faster (int. data size
= 16TB).

Note that our implementation of Sailfish can be tuned fur-
ther. For instance, rather than sorting individual chunks when they
become stable, multiple chunks can be locally aggregated and sorted.
This optimization increases the length of the “sorted runs” which
can lead to better scale/performance. That is, when compared to
Figure 9, this optimization can increase the data read per retrieval
at larger values of intermediate data size.

Finally, there is also the issue of implementation differences be-
tween the two systems when transporting intermediate data. Based
on the above results (coupled with the observation that there is no
data skew), much of the gains in Sailfish are due to better disk
I/O in the reduce phase. Therefore, unless the I/O sizes in both
systems are comparable, we do not believe the implementation dif-
ferences have a significant impact on performance.

6.2.3 Effectiveness of I-files

For a given I-file our atomic record append implementation tries
to minimize the number of chunks required for storing the interme-
diate data. The experimental results validated the implementation.
The chunk allocation policy ensured that the number of chunks per
I-file was close to optimal (i.e., size of I-file /KFS chunksize).
Furthermore, except for the last chunk of an I-file, the remaining
chunks were over 99% full. This is key to our strategy of maximiz-
ing batching: a metric discussed in Section 4.2.4 was the number
of files used to store intermediate data.

6.2.4 Chunk sorting overheads

For I-files, whenever a chunk becomes stable, the chunkserver
utilizes the chunksorter daemon to sort the records in the chunk.
The chunksorter daemon is I/O intensive and performs largely se-
quential I/O: First, it spends approximately 2-4 seconds loading a
128MB chunk of data into RAM. Second, it spends approximately
1-2 seconds sorting the keys using a radix trie algorithm. Finally, it
spends approximately 2-4 seconds writing the sorted data back to
disk4.

6.2.5 Impact of network-based aggregation

The improvements in the reduce phase of execution with Sailfish
come at the expense of an additional network transfer. During the
map phase, in Stock Hadoop, a map task writes its output to the
local filesystem’s buffer cache (which writes the data to disk asyn-
chronously). With Sailfish, the map output is committed to
RAM on remote machines (and the chunkserver aggregates and

4Since writing out the sorter output file is a large sequential
I/O, as a performance optimization, our implementation uses the
posix_fallocate()API for contiguous disk space allocation.

writes to disk asynchronously). This additional network transfer
causes the map phase of execution to be higher by about 10%.

From a practical standpoint, aggregating map output on per-rack
basis (see Section 5.4) minimizes the impact of the additional traf-
fic on the network for two reasons. First, clusters for data inten-
sive computing are configured with higher intra-rack connectivity
when compared to inter-rack capacity. For instance, in Yahoo!’s
clusters, the connectivity is 1Gbps between any pair of intra-rack
nodes when compared to 200Mbps between inter-rack nodes. Sec-
ond, due to locality optimizations in the Hadoop job scheduler (i.e.,
schedule tasks where the data is stored) the intra-rack capacity is
relatively unused and Sailfish leverages the unused capacity.

Finally, network capacity within the datacenter is slated to sub-
stantially increase over the next few years. Clusters with 10Gbps
inter-node connectivity (on a small scale) have been deployed [25];
larger clusters with such connectivity will be commonplace. We ex-
pect Sailfish to be deployed in such settings, where maximiz-
ing the achievable disk subystem bandwidth and in turn effectively
utilizing the available network bandwidth becomes paramount.

6.3 Evaluation With Actual Jobs

For this part of the study we first construct a job mix by develop-
ing a simple taxonomy for classifying Map-Reduce jobs in general.
Our taxonomy is based on an analysis of jobs we see in Yahoo!’s
clusters (see Section 6.3.1). Using this taxonomy, we handpicked
a representative mix of jobs to drive an evaluation using actual
datasets and jobs (from data mining, data analytics pipelines) run
in production clusters at Yahoo!. We then present the results of our
evaluation.

6.3.1 Constructing a Job Mix

Based on conversations with our users as well as an analysis of our
cluster workloads, we use the following taxonomy for classifying
MapReduce jobs in general:

1. Skew in map output: Data compression is commonly used
in practice, and users organize their data so as to obtain high
compression ratios. As a result, the number of input records
processed by various map tasks can be substantially different,
and this impacts the size of the output of the task.

2. Skew in reduce input: These are jobs for which some parti-
tions get more data than others. The causes for skew include
poor choice of partitioning function, low entropy in keys, etc.

3. Incremental computation: Incremental computation is a
commonly used paradigm in data intensive computing en-
vironments. A typical use case is creating a sliding window
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Figure 10: Disk read throughput in the re-
duce phase with Sailfish is higher and
hence reduce phase is faster (int. data size
= 16TB).

Note that our implementation of Sailfish can be tuned fur-
ther. For instance, rather than sorting individual chunks when they
become stable, multiple chunks can be locally aggregated and sorted.
This optimization increases the length of the “sorted runs” which
can lead to better scale/performance. That is, when compared to
Figure 9, this optimization can increase the data read per retrieval
at larger values of intermediate data size.

Finally, there is also the issue of implementation differences be-
tween the two systems when transporting intermediate data. Based
on the above results (coupled with the observation that there is no
data skew), much of the gains in Sailfish are due to better disk
I/O in the reduce phase. Therefore, unless the I/O sizes in both
systems are comparable, we do not believe the implementation dif-
ferences have a significant impact on performance.

6.2.3 Effectiveness of I-files

For a given I-file our atomic record append implementation tries
to minimize the number of chunks required for storing the interme-
diate data. The experimental results validated the implementation.
The chunk allocation policy ensured that the number of chunks per
I-file was close to optimal (i.e., size of I-file /KFS chunksize).
Furthermore, except for the last chunk of an I-file, the remaining
chunks were over 99% full. This is key to our strategy of maximiz-
ing batching: a metric discussed in Section 4.2.4 was the number
of files used to store intermediate data.

6.2.4 Chunk sorting overheads

For I-files, whenever a chunk becomes stable, the chunkserver
utilizes the chunksorter daemon to sort the records in the chunk.
The chunksorter daemon is I/O intensive and performs largely se-
quential I/O: First, it spends approximately 2-4 seconds loading a
128MB chunk of data into RAM. Second, it spends approximately
1-2 seconds sorting the keys using a radix trie algorithm. Finally, it
spends approximately 2-4 seconds writing the sorted data back to
disk4.

6.2.5 Impact of network-based aggregation

The improvements in the reduce phase of execution with Sailfish
come at the expense of an additional network transfer. During the
map phase, in Stock Hadoop, a map task writes its output to the
local filesystem’s buffer cache (which writes the data to disk asyn-
chronously). With Sailfish, the map output is committed to
RAM on remote machines (and the chunkserver aggregates and

4Since writing out the sorter output file is a large sequential
I/O, as a performance optimization, our implementation uses the
posix_fallocate()API for contiguous disk space allocation.

writes to disk asynchronously). This additional network transfer
causes the map phase of execution to be higher by about 10%.

From a practical standpoint, aggregating map output on per-rack
basis (see Section 5.4) minimizes the impact of the additional traf-
fic on the network for two reasons. First, clusters for data inten-
sive computing are configured with higher intra-rack connectivity
when compared to inter-rack capacity. For instance, in Yahoo!’s
clusters, the connectivity is 1Gbps between any pair of intra-rack
nodes when compared to 200Mbps between inter-rack nodes. Sec-
ond, due to locality optimizations in the Hadoop job scheduler (i.e.,
schedule tasks where the data is stored) the intra-rack capacity is
relatively unused and Sailfish leverages the unused capacity.

Finally, network capacity within the datacenter is slated to sub-
stantially increase over the next few years. Clusters with 10Gbps
inter-node connectivity (on a small scale) have been deployed [25];
larger clusters with such connectivity will be commonplace. We ex-
pect Sailfish to be deployed in such settings, where maximiz-
ing the achievable disk subystem bandwidth and in turn effectively
utilizing the available network bandwidth becomes paramount.

6.3 Evaluation With Actual Jobs

For this part of the study we first construct a job mix by develop-
ing a simple taxonomy for classifying Map-Reduce jobs in general.
Our taxonomy is based on an analysis of jobs we see in Yahoo!’s
clusters (see Section 6.3.1). Using this taxonomy, we handpicked
a representative mix of jobs to drive an evaluation using actual
datasets and jobs (from data mining, data analytics pipelines) run
in production clusters at Yahoo!. We then present the results of our
evaluation.

6.3.1 Constructing a Job Mix

Based on conversations with our users as well as an analysis of our
cluster workloads, we use the following taxonomy for classifying
MapReduce jobs in general:

1. Skew in map output: Data compression is commonly used
in practice, and users organize their data so as to obtain high
compression ratios. As a result, the number of input records
processed by various map tasks can be substantially different,
and this impacts the size of the output of the task.

2. Skew in reduce input: These are jobs for which some parti-
tions get more data than others. The causes for skew include
poor choice of partitioning function, low entropy in keys, etc.

3. Incremental computation: Incremental computation is a
commonly used paradigm in data intensive computing en-
vironments. A typical use case is creating a sliding window
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Figure 9: Data read per retrieval by
a reduce task with Stock Hadoop and
Sailfish.
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duce phase with Sailfish is higher and
hence reduce phase is faster (int. data size
= 16TB).

Note that our implementation of Sailfish can be tuned fur-
ther. For instance, rather than sorting individual chunks when they
become stable, multiple chunks can be locally aggregated and sorted.
This optimization increases the length of the “sorted runs” which
can lead to better scale/performance. That is, when compared to
Figure 9, this optimization can increase the data read per retrieval
at larger values of intermediate data size.

Finally, there is also the issue of implementation differences be-
tween the two systems when transporting intermediate data. Based
on the above results (coupled with the observation that there is no
data skew), much of the gains in Sailfish are due to better disk
I/O in the reduce phase. Therefore, unless the I/O sizes in both
systems are comparable, we do not believe the implementation dif-
ferences have a significant impact on performance.

6.2.3 Effectiveness of I-files

For a given I-file our atomic record append implementation tries
to minimize the number of chunks required for storing the interme-
diate data. The experimental results validated the implementation.
The chunk allocation policy ensured that the number of chunks per
I-file was close to optimal (i.e., size of I-file /KFS chunksize).
Furthermore, except for the last chunk of an I-file, the remaining
chunks were over 99% full. This is key to our strategy of maximiz-
ing batching: a metric discussed in Section 4.2.4 was the number
of files used to store intermediate data.

6.2.4 Chunk sorting overheads

For I-files, whenever a chunk becomes stable, the chunkserver
utilizes the chunksorter daemon to sort the records in the chunk.
The chunksorter daemon is I/O intensive and performs largely se-
quential I/O: First, it spends approximately 2-4 seconds loading a
128MB chunk of data into RAM. Second, it spends approximately
1-2 seconds sorting the keys using a radix trie algorithm. Finally, it
spends approximately 2-4 seconds writing the sorted data back to
disk4.

6.2.5 Impact of network-based aggregation

The improvements in the reduce phase of execution with Sailfish
come at the expense of an additional network transfer. During the
map phase, in Stock Hadoop, a map task writes its output to the
local filesystem’s buffer cache (which writes the data to disk asyn-
chronously). With Sailfish, the map output is committed to
RAM on remote machines (and the chunkserver aggregates and

4Since writing out the sorter output file is a large sequential
I/O, as a performance optimization, our implementation uses the
posix_fallocate()API for contiguous disk space allocation.

writes to disk asynchronously). This additional network transfer
causes the map phase of execution to be higher by about 10%.

From a practical standpoint, aggregating map output on per-rack
basis (see Section 5.4) minimizes the impact of the additional traf-
fic on the network for two reasons. First, clusters for data inten-
sive computing are configured with higher intra-rack connectivity
when compared to inter-rack capacity. For instance, in Yahoo!’s
clusters, the connectivity is 1Gbps between any pair of intra-rack
nodes when compared to 200Mbps between inter-rack nodes. Sec-
ond, due to locality optimizations in the Hadoop job scheduler (i.e.,
schedule tasks where the data is stored) the intra-rack capacity is
relatively unused and Sailfish leverages the unused capacity.

Finally, network capacity within the datacenter is slated to sub-
stantially increase over the next few years. Clusters with 10Gbps
inter-node connectivity (on a small scale) have been deployed [25];
larger clusters with such connectivity will be commonplace. We ex-
pect Sailfish to be deployed in such settings, where maximiz-
ing the achievable disk subystem bandwidth and in turn effectively
utilizing the available network bandwidth becomes paramount.

6.3 Evaluation With Actual Jobs

For this part of the study we first construct a job mix by develop-
ing a simple taxonomy for classifying Map-Reduce jobs in general.
Our taxonomy is based on an analysis of jobs we see in Yahoo!’s
clusters (see Section 6.3.1). Using this taxonomy, we handpicked
a representative mix of jobs to drive an evaluation using actual
datasets and jobs (from data mining, data analytics pipelines) run
in production clusters at Yahoo!. We then present the results of our
evaluation.

6.3.1 Constructing a Job Mix

Based on conversations with our users as well as an analysis of our
cluster workloads, we use the following taxonomy for classifying
MapReduce jobs in general:

1. Skew in map output: Data compression is commonly used
in practice, and users organize their data so as to obtain high
compression ratios. As a result, the number of input records
processed by various map tasks can be substantially different,
and this impacts the size of the output of the task.

2. Skew in reduce input: These are jobs for which some parti-
tions get more data than others. The causes for skew include
poor choice of partitioning function, low entropy in keys, etc.

3. Incremental computation: Incremental computation is a
commonly used paradigm in data intensive computing en-
vironments. A typical use case is creating a sliding window
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Job Name Job Characteristics Operators Input size Int. data size # of mappers # of reducers Run time
Stock Hadoop Sailfish Stock Hadoop Sailfish

LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00

FILTER

SegmentExploder Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,

FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.
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Figure 12: Distribution of map task run
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Figure 14: For the LogRead job
Sailfish handles skew in interme-
diate data by assigning reduce tasks in
proportion to the data in the I-file (see
Figure 13).

6.3.3 Impact of data loss in I-files

In our setting the intermediate data is not replicated: Stock Hadoop
does not implement it and for a fair comparison, we did not enable
replication for I-files. Hence, in the event of data loss (viz., caused
by a disk failure), the lost data has to be regenerated via recompu-
tation. When a disk fails, the required recomputations on the two
systems are:

• Stock Hadoop: Since map tasks store their output on the local
disks by arbitrarily choosing a drive, the expected number of

recomputes is: # of tasks run on a node
# of drives on a node .

• Sailfish: With 512 I-files and 30 machines per rack,
with per-rack I-files, a map task running on a node will write
to all the chunkservers in the rack. Since a chunkserver on
a node arbitrarily chooses a drive to store a chunk file, the

expected number of recomputes is: # of tasks run on a rack
# of drives on a node .

Though these recompute tasks can be run in parallel, their effect
on job runtimes is data dependent. For jobs where there is a skew
in map output, the cost of recompute with Stock Hadoop is much
higher than Sailfish. For instance, for the LogProc job in
which over 90% of the job run-time is in the map phase of com-
putation, recomputes can cause the overall job run-time to nearly
double: The run-time with Stock Hadoop increases from 2 :18 to
4 :06, while with Sailfish it increases from 0 :42 to 1 :08. For
the other jobs where there is no skew in map output, regenerating
the lost data requires about 1 to 2 waves of map task execution
which causes a 10-20% increase in job runtime in either system.

7 Related Work

The performance of Hadoop Map-Reduce framework has been stud-
ied recently [16, 22, 27]. In [22], they find that Hadoop job perfor-
mance is affected by factors such as, lack of a schema which im-
pacts selection queries, lack of an index which affects join perfor-
mance, and data parsing overheads. Reference [12] shows how to
improve Hadoop performance by augmenting data with a schema
as well as an index and then using the augmented information to
substantially speed up select/join operators. These mechanisms are
applicable with Sailfish as well. In [16], they identify addi-
tional factors that affect Hadoop performance such as, I/O mode
for accessing data from disk, and task scheduling. The paper also
describes ways to tune these factors to improve performance by 2.5
to 3.5x. The same paper also notes that another potential source
of performance improvement is in modifying how the intermedi-
ate data is handled. Our work addresses this aspect and our results
demonstrate substantial gains.

TritonSort [24, 25] was developed for doing large-scale data sort-
ing. Recently, in an effort that parallels our Sailfish work, the
TritonSort architecture has been extended with a Map-Reduce im-
plementation called ThemisMR [23]. While an experimental com-
parison of the two systems is outside the scope of this paper, we
briefly describe the ThemisMR design and then contrast it with
Sailfish. The design goals of ThemisMR are similar to some
our objectives in building Sailfish: (1) ThemisMR focuses on
optimizing disk subsystem performance when handling intermedi-
ate data at scale and (2) ThemisMR tries to mitigate skew in reducer
input. With ThemisMR, a Map-Reduce computation consists of
two distinct phases, namely map and shuffle followed by sort and
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Figure 11: Time spent in the Map and Reduce phases of execu-
tion for the various MapReduce jobs. At scale, Sailfish (S)
outperforms Stock Hadoop (H) between 20% to a factor of 5.

over a dataset. For instance, for behavioral targeting, N -day
models of user behavior are created by a key-based join of a
1-day model with the previous N -day model.

4. Big data: These are data mining jobs that process vast amounts
of data, e.g., jobs that process a day of server logs (where the
daily log volume is about 5TB in size). With these jobs, the
output is proportional to the input (i.e., for each input record,
the job generates an output record of proportional size).

5. Data explosion: These are jobs for which the output of the
map step is a multiple of the input size. For instance, to
analyze the effectiveness of an online ad-campaign by geo-
location (e.g., impressions by (1) country, (2) state, (3) city),
the map task emits multiple records for each input record.

6. Data reduction: These are jobs in which the computation
involves a data reduction step which causes the intermediate
data size (and job output) to be a fraction of the job input.
For example, there are jobs that compute statistics over the
data by processing a few TB of input but producing only a
few GB of output.

Table 3 shows the jobs that we handpicked for our evaluation. We
note that several of these are Pig scripts containing joins and co-
grouping, and produce large amounts of intermediate data. Of these
jobs, BehaviorModel, ClickAttribution are CPU and data inten-
sive, while the rest are data intensive. Finally, note that in all of
these jobs, with the exception of LogCount, there is no reduction
in the intermediate data size when compared to the job input’s size.

6.3.2 Evaluation With Representative Jobs

Hadoop best practices [19] recommend using compression to min-
imize the amount of I/O when handling intermediate data. Hence,
for this set of experiments, for handling intermediate data we en-
abled LZO-based compression with Stock Hadoop and extended
our Sailfish implementation to support an LZO codec.

Table 3 shows the data volumes for the various jobs as well
as the number of map/reduce tasks. Note that multiple waves of
map/reduce tasks per job is common.

For this set of experiments, the workbuilder was configured
to assign upto 2GB of data per reduce task (independent of the
job). This value represents a trade-off between fault-tolerance (i.e.,
amount of computation that has to be re-done when a reducer fails)
versus performance (i.e., a large value implies fewer reducers, pos-
sibly improving disk performance due to larger sequential I/Os). As

part of follow-on work [8], we are exploring ways of eliminating
this parameter. This would then allow the reduce phase of execu-
tion to be adapted completely dynamically based on the available
cluster resources (viz., CPUs).

Figure 11 shows the results of running the various jobs using
Stock Hadoop as well as Sailfish. Our results show that as
the volume of intermediate data scales, job completion times with
Sailfish are between 20% to 5x faster when compared to the
same job run with Stock Hadoop. There are three aspects to the
gains:

• Using I-files for aggregation: In terms of the reduce phase
of computation, except for the LogProc and LogRead jobs
in which the volume of intermediate data is relatively low
(see Table 3), for the remaining jobs there is a substantial
speedup with Sailfish. The speedup in the reduce phase
is due to the better batching of intermediate data in I-files,
similar to what we observed with Benchmark.

• Decoupling sorting from map task execution: From our
job mix, we found that skew in map output impacted Log-
Proc and NdayModel jobs: (1) in the LogProc job, a few
of the map tasks generated as much as 30GB of data, and
(2) in the NdayModel job, which involves a JOIN of an N -
day dataset with a 1-day dataset, about half the map tasks
that processed files from the N -day dataset generated about
10GB of data while the remaining tasks generated 450MB of
data. Figure 12 shows the distribution of map task comple-
tion times for NdayModel job. While the skew affects map
task completion times in both Stock Hadoop and Sailfish,
the impact on Stock Hadoop due to the sorting overheads in-
curred by map tasks is much higher. This result validates
one of our design choices: decoupling the sort of map output
from map task execution. In these experiments, particularly
for the LogProc job, such a separation yielded upto a 5x im-
provement in application run-time.

• Making reduce phase dynamic: Dynamically determining
the number of reduce tasks and their work assignment in a
data dependent manner helps in skew handling as well as in
automatically exploiting the parallelism in the reduce phase.
We illustrate these effects using the LogRead job in which
there is a skew in the intermediate data (particularly, as Fig-
ure 13 shows, partitions 0-200 had more data than the rest—
4.5GB vs 0.5GB). As shown in Table 3 Sailfish used
more reduce tasks than Stock Hadoop (800 compared to 512),
and proportionately more reducers were assigned to those
partitions (i.e., as shown in Figure 14, with 2GB of data per
reduce task, I-file0 to I-file200 were assigned 3 reducers per
I-file while the remaining I-files were assigned 1 reducer
apiece). As a result, by better exploiting the available paral-
lelism, the reduce phase in Sailfish is much faster com-
pared to Stock Hadoop. Our approach realizes these benefits
in a seamless manner without re-partitioning the intermediate
data and simplifies program tuning.

Finally, to study the effect of change in data volume, we ran the
ClickAttribution job using Sailfish where we increased the in-
put data size (from 25% to 100%). We found that the workbuilder
deamon automatically caused the number of reduce tasks to in-
crease proportionately (i.e., from 4096 to 8192) in a data dependent
manner.
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Job Name Job Characteristics Operators Input size Int. data size # of mappers # of reducers Run time
Stock Hadoop Sailfish Stock Hadoop Sailfish

LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00

FILTER

SegmentExploder Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,

FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.
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Figure 12: Distribution of map task run
time for NdayModel job. Skew in map
output sizes affects task completion times
for both Stock Hadoop and Sailfish,
but the impact for Stock Hadoop is much
higher.
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Figure 13: Distribution of the size of the
intermediate data files in LogRead job.
For this job there is a skew in distribution
of data across partitions (i.e., skew in re-
ducer input).
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Figure 14: For the LogRead job
Sailfish handles skew in interme-
diate data by assigning reduce tasks in
proportion to the data in the I-file (see
Figure 13).

6.3.3 Impact of data loss in I-files

In our setting the intermediate data is not replicated: Stock Hadoop
does not implement it and for a fair comparison, we did not enable
replication for I-files. Hence, in the event of data loss (viz., caused
by a disk failure), the lost data has to be regenerated via recompu-
tation. When a disk fails, the required recomputations on the two
systems are:

• Stock Hadoop: Since map tasks store their output on the local
disks by arbitrarily choosing a drive, the expected number of

recomputes is: # of tasks run on a node
# of drives on a node .

• Sailfish: With 512 I-files and 30 machines per rack,
with per-rack I-files, a map task running on a node will write
to all the chunkservers in the rack. Since a chunkserver on
a node arbitrarily chooses a drive to store a chunk file, the

expected number of recomputes is: # of tasks run on a rack
# of drives on a node .

Though these recompute tasks can be run in parallel, their effect
on job runtimes is data dependent. For jobs where there is a skew
in map output, the cost of recompute with Stock Hadoop is much
higher than Sailfish. For instance, for the LogProc job in
which over 90% of the job run-time is in the map phase of com-
putation, recomputes can cause the overall job run-time to nearly
double: The run-time with Stock Hadoop increases from 2 :18 to
4 :06, while with Sailfish it increases from 0 :42 to 1 :08. For
the other jobs where there is no skew in map output, regenerating
the lost data requires about 1 to 2 waves of map task execution
which causes a 10-20% increase in job runtime in either system.

7 Related Work

The performance of Hadoop Map-Reduce framework has been stud-
ied recently [16, 22, 27]. In [22], they find that Hadoop job perfor-
mance is affected by factors such as, lack of a schema which im-
pacts selection queries, lack of an index which affects join perfor-
mance, and data parsing overheads. Reference [12] shows how to
improve Hadoop performance by augmenting data with a schema
as well as an index and then using the augmented information to
substantially speed up select/join operators. These mechanisms are
applicable with Sailfish as well. In [16], they identify addi-
tional factors that affect Hadoop performance such as, I/O mode
for accessing data from disk, and task scheduling. The paper also
describes ways to tune these factors to improve performance by 2.5
to 3.5x. The same paper also notes that another potential source
of performance improvement is in modifying how the intermedi-
ate data is handled. Our work addresses this aspect and our results
demonstrate substantial gains.

TritonSort [24, 25] was developed for doing large-scale data sort-
ing. Recently, in an effort that parallels our Sailfish work, the
TritonSort architecture has been extended with a Map-Reduce im-
plementation called ThemisMR [23]. While an experimental com-
parison of the two systems is outside the scope of this paper, we
briefly describe the ThemisMR design and then contrast it with
Sailfish. The design goals of ThemisMR are similar to some
our objectives in building Sailfish: (1) ThemisMR focuses on
optimizing disk subsystem performance when handling intermedi-
ate data at scale and (2) ThemisMR tries to mitigate skew in reducer
input. With ThemisMR, a Map-Reduce computation consists of
two distinct phases, namely map and shuffle followed by sort and
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Job Name Job Characteristics Operators Input size Int. data size # of mappers # of reducers Run time

Stock Hadoop Sailfish Stock Hadoop Sailfish

LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00

FILTER

SegmentExploder Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,

FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.
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Figure 12: Distribution of map task run
time for NdayModel job. Skew in map
output sizes affects task completion times
for both Stock Hadoop and Sailfish,
but the impact for Stock Hadoop is much
higher.
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Figure 13: Distribution of the size of the
intermediate data files in LogRead job.
For this job there is a skew in distribution
of data across partitions (i.e., skew in re-
ducer input).
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Figure 14: For the LogRead job
Sailfish handles skew in interme-
diate data by assigning reduce tasks in
proportion to the data in the I-file (see
Figure 13).

6.3.3 Impact of data loss in I-files

In our setting the intermediate data is not replicated: Stock Hadoop
does not implement it and for a fair comparison, we did not enable
replication for I-files. Hence, in the event of data loss (viz., caused
by a disk failure), the lost data has to be regenerated via recompu-
tation. When a disk fails, the required recomputations on the two
systems are:

• Stock Hadoop: Since map tasks store their output on the local
disks by arbitrarily choosing a drive, the expected number of

recomputes is: # of tasks run on a node
# of drives on a node .

• Sailfish: With 512 I-files and 30 machines per rack,
with per-rack I-files, a map task running on a node will write
to all the chunkservers in the rack. Since a chunkserver on
a node arbitrarily chooses a drive to store a chunk file, the

expected number of recomputes is: # of tasks run on a rack
# of drives on a node .

Though these recompute tasks can be run in parallel, their effect
on job runtimes is data dependent. For jobs where there is a skew
in map output, the cost of recompute with Stock Hadoop is much
higher than Sailfish. For instance, for the LogProc job in
which over 90% of the job run-time is in the map phase of com-
putation, recomputes can cause the overall job run-time to nearly
double: The run-time with Stock Hadoop increases from 2 :18 to
4 :06, while with Sailfish it increases from 0 :42 to 1 :08. For
the other jobs where there is no skew in map output, regenerating
the lost data requires about 1 to 2 waves of map task execution
which causes a 10-20% increase in job runtime in either system.

7 Related Work

The performance of Hadoop Map-Reduce framework has been stud-
ied recently [16, 22, 27]. In [22], they find that Hadoop job perfor-
mance is affected by factors such as, lack of a schema which im-
pacts selection queries, lack of an index which affects join perfor-
mance, and data parsing overheads. Reference [12] shows how to
improve Hadoop performance by augmenting data with a schema
as well as an index and then using the augmented information to
substantially speed up select/join operators. These mechanisms are
applicable with Sailfish as well. In [16], they identify addi-
tional factors that affect Hadoop performance such as, I/O mode
for accessing data from disk, and task scheduling. The paper also
describes ways to tune these factors to improve performance by 2.5
to 3.5x. The same paper also notes that another potential source
of performance improvement is in modifying how the intermedi-
ate data is handled. Our work addresses this aspect and our results
demonstrate substantial gains.

TritonSort [24, 25] was developed for doing large-scale data sort-
ing. Recently, in an effort that parallels our Sailfish work, the
TritonSort architecture has been extended with a Map-Reduce im-
plementation called ThemisMR [23]. While an experimental com-
parison of the two systems is outside the scope of this paper, we
briefly describe the ThemisMR design and then contrast it with
Sailfish. The design goals of ThemisMR are similar to some
our objectives in building Sailfish: (1) ThemisMR focuses on
optimizing disk subsystem performance when handling intermedi-
ate data at scale and (2) ThemisMR tries to mitigate skew in reducer
input. With ThemisMR, a Map-Reduce computation consists of
two distinct phases, namely map and shuffle followed by sort and

Job Name Job Characteristics Operators Input size Int. data size # of mappers # of reducers Run time
Stock Hadoop Sailfish Stock Hadoop Sailfish

LogCount Data reduction COUNT 1.1TB 0.04TB 400 512 512 0:11 0:14
LogProc Skew in map output GROUP BY 1.1TB 1.1TB 400 1024 1024 3:27 0:37
LogRead Skew in reduce input GROUP BY 1.1TB 1.1TB 400 512 800 0:58 0:40
NdayModel Incr. computation JOIN 3.54TB 3.54TB 2000 4096 4096 2:18 0:42
BehaviorModel Big data job COGROUP 3.6TB 9.47TB 4000 4096 5120 4:55 3:15
ClickAttribution Big data job COGROUP, 6.8TB 8.2TB 21259 4096 4096 6:00 5:00

FILTER

SegmentExploder Data explosion COGROUP, 14.1TB 25.2TB 42092 16384 13824 13:20 8:48
FLATTEN,

FILTER

Table 3: Characteristics of the jobs used in the experiments. The data sizes are post-compression. The job run times reported in
this table are end-to-end (i.e., from start to finish). As data volumes scale, Sailfish outperforms Stock Hadoop between 20% to a
factor of 5. See Figure 11 for a break-down in the time spent in Map/Reduce phases of the job.
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Figure 12: Distribution of map task run
time for NdayModel job. Skew in map
output sizes affects task completion times
for both Stock Hadoop and Sailfish,
but the impact for Stock Hadoop is much
higher.
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Figure 13: Distribution of the size of the
intermediate data files in LogRead job.
For this job there is a skew in distribution
of data across partitions (i.e., skew in re-
ducer input).
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Figure 14: For the LogRead job
Sailfish handles skew in interme-
diate data by assigning reduce tasks in
proportion to the data in the I-file (see
Figure 13).

6.3.3 Impact of data loss in I-files

In our setting the intermediate data is not replicated: Stock Hadoop
does not implement it and for a fair comparison, we did not enable
replication for I-files. Hence, in the event of data loss (viz., caused
by a disk failure), the lost data has to be regenerated via recompu-
tation. When a disk fails, the required recomputations on the two
systems are:

• Stock Hadoop: Since map tasks store their output on the local
disks by arbitrarily choosing a drive, the expected number of

recomputes is: # of tasks run on a node
# of drives on a node .

• Sailfish: With 512 I-files and 30 machines per rack,
with per-rack I-files, a map task running on a node will write
to all the chunkservers in the rack. Since a chunkserver on
a node arbitrarily chooses a drive to store a chunk file, the

expected number of recomputes is: # of tasks run on a rack
# of drives on a node .

Though these recompute tasks can be run in parallel, their effect
on job runtimes is data dependent. For jobs where there is a skew
in map output, the cost of recompute with Stock Hadoop is much
higher than Sailfish. For instance, for the LogProc job in
which over 90% of the job run-time is in the map phase of com-
putation, recomputes can cause the overall job run-time to nearly
double: The run-time with Stock Hadoop increases from 2 :18 to
4 :06, while with Sailfish it increases from 0 :42 to 1 :08. For
the other jobs where there is no skew in map output, regenerating
the lost data requires about 1 to 2 waves of map task execution
which causes a 10-20% increase in job runtime in either system.

7 Related Work

The performance of Hadoop Map-Reduce framework has been stud-
ied recently [16, 22, 27]. In [22], they find that Hadoop job perfor-
mance is affected by factors such as, lack of a schema which im-
pacts selection queries, lack of an index which affects join perfor-
mance, and data parsing overheads. Reference [12] shows how to
improve Hadoop performance by augmenting data with a schema
as well as an index and then using the augmented information to
substantially speed up select/join operators. These mechanisms are
applicable with Sailfish as well. In [16], they identify addi-
tional factors that affect Hadoop performance such as, I/O mode
for accessing data from disk, and task scheduling. The paper also
describes ways to tune these factors to improve performance by 2.5
to 3.5x. The same paper also notes that another potential source
of performance improvement is in modifying how the intermedi-
ate data is handled. Our work addresses this aspect and our results
demonstrate substantial gains.

TritonSort [24, 25] was developed for doing large-scale data sort-
ing. Recently, in an effort that parallels our Sailfish work, the
TritonSort architecture has been extended with a Map-Reduce im-
plementation called ThemisMR [23]. While an experimental com-
parison of the two systems is outside the scope of this paper, we
briefly describe the ThemisMR design and then contrast it with
Sailfish. The design goals of ThemisMR are similar to some
our objectives in building Sailfish: (1) ThemisMR focuses on
optimizing disk subsystem performance when handling intermedi-
ate data at scale and (2) ThemisMR tries to mitigate skew in reducer
input. With ThemisMR, a Map-Reduce computation consists of
two distinct phases, namely map and shuffle followed by sort and
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  number	
  of	
  reduce	
  
tasks	
  helps	
  in	
  skew	
  
handling.	
  

•  More	
  reducers	
  were	
  
assigned	
  to	
  par22ons	
  
with	
  large	
  data.	
  



Conclusions	
  from	
  Results	


•  I-­‐files	
  enable	
  bexer	
  batching	
  of	
  intermediate	
  
data.	
  
– Sailfish	
  provides	
  bexer	
  scale	
  than	
  Stock	
  Hadoop.	
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7.	
  Related	
  Work	


•  TritonSort	
  
– Using	
  MapReduce	
  implementa2on	
  “ThemisMR”.	
  
–  It	
  considers	
  a	
  point	
  in	
  the	
  small	
  design	
  space.	
  

•  Starfish	
  
– Profiling	
  has	
  to	
  be	
  run	
  to	
  obtain	
  suitable	
  
parameter	
  values.	
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8.	
  Summary	


•  Sailfish	
  is	
  an	
  alternate	
  MapReduce	
  framework	
  
to	
  aggregate	
  intermediate	
  data.	
  
– Developed	
  I-­‐files	
  as	
  distributed	
  filesystem.	
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Future	
  Work	


•  Add	
  a	
  feedback	
  loop	
  to	
  the	
  reduce	
  phase	
  of	
  
Sailfish	
  to	
  re-­‐par22on	
  the	
  key-­‐boundary	
  work.	
  

•  Evaluate	
  mechanisms	
  for	
  replica2ng	
  
intermediate	
  data.	
  

•  Have	
  I-­‐files	
  to	
  provide	
  new	
  opportuni2es	
  for	
  
debugging	
  (e.g.	
  saving	
  valuable	
  programmer	
  
2me	
  with	
  reducing	
  phase	
  of	
  a	
  job).	
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My	
  Impressions	


Strong	
  Points	

•  Considers	
  large-­‐scale	
  data	
  

and	
  clusters.	
  
–  It	
  will	
  be	
  applicable	
  to	
  system	
  

handling	
  larger	
  data.	
  

•  Sailfish	
  framework	
  has	
  good	
  
scalability	
  compared	
  to	
  
current	
  Hadoop.	


Weak	
  Points	

•  Used	
  only	
  limited	
  data	
  and	
  

situa2ons	
  (Yahoo!	
  data	
  set).	
  
•  Not	
  compared	
  with	
  other	
  

frameworks	
  than	
  Stock	
  
Hadoop.	
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