
Hystor: Making the Best Use of Solid 
State Drives in High Performance 
Storage Systems 

Author: Feng Chen†  David Koufaty†  Xiaodong Zhang††	


† Circuits and Systems Research Intel Labs 
†† Dept. of Computer Science & Engineering 

The Ohio State University 	


	


Presenter: Ryohei Kobayashi (13D38025) 

Mon. December 23rd, 2013 
@High Performance Computing Class 

25th International Conference on Supercomputing  
(ICS2011), May 31 - June 4, 2011 
Sponsored by ACM/SIGARCH 



l  ICS: one of the top conference 

 
 
 
 
 
l  Best Paper Award 

The Selected Paper 

1 



l  This paper shows how to make the best use of 
SSD in storage systems with insights based on the 
design and implementation of a high performance 
hybrid storage system, called Hystor.  
Ø SSD should play a major role as an independent storage 
where the best suitable data are adaptively and timely 
migrated in and retained.  

Ø  It can also be effective to serve as a write-back buffer. 

Abstract 

2 



l  Hystor: A Hybrid Storage System 
l  Hystor manages both SSDs and HDDs as one single block 

device with minimal changes to existing OS kernels.  
l  Monitoring I/O access patterns at runtime 

Ø  Hystor can effectively identify following blocks and store them in SSD 
﹣  (1)Blocks that can result in long latencies 
﹣  (2)Blocks that are semantically critical (e.g. file system metadata) 

l  In order to further leverage the exceptionally high 
performance of writes in the state-of-the-art SSD, SSD is 
also used as write-back buffer 
Ø  To speed up write requests 

l  This Study on Hystor implemented in the Linux kernel 
2.6.25.8 shows 
Ø  it can take advantage of the performance merits of SSDs with only a 

few lines of changes to the stock Linux kernel.  

Abstract - What is the Hystor? -  

3 



l  Introduction 
l  SSD Performance Advantages 
l  High-Cost Data Blocks 
l Maintaining Data Access History 
l  The Design and Implementation of Hystor 
l  Evaluation 
l  Conclusion and Impression 

Agenda 

4 



l  Introduction 
l  SSD Performance Advantages 
l  High-Cost Data Blocks 
l Maintaining Data Access History 
l  The Design and Implementation of Hystor 
l  Evaluation 
l  Conclusion and Impression 

Agenda 

5 



l  SSDs are becoming an important part of high-performance 
storage systems 

Introduction 

6 

‘Gordon‘ Supercomputer 
@San Diego Supercomputer Center(SDSC) 

•  A flash-based supercomputer [ASPLOS’09] 
 
•  Adopting 256TB of flash memory as storage* 
 
•  $20 million funding from the National Science 

Foundation (NSF) 

* http://www.internetnews.com/hardware/article.php/3847456  



l SSD’s disadvantages 
Ø Relatively high price and low capacity 
﹣ E.g. around $12/GB (32GB Intel® X25-E SSD) 

•  100 times more expensive than a typical commodity 
HDD 

Introduction 

7 

http://www.storagesearch.com/
semico-art1.html  



l  It’s Unsuitable to built a storage system 
completely based on SSDs 
Ø Especially, for most commercial and daily operated 
systems 

l  Authors believe that SSDs should be a means to 
enhance the existing HDD-based storage 
Ø Only by finding the fittest position in storage systems, it’s 
possible to strike a right balance between performance 
and cost 

Introduction 

8 

Thus... 



l  Contributions of this work 
Ø  Identifying an effective metric to represent the 
performance-critical blocks by considering both temporal 
locality and data access patterns  

Ø Design of an efficient mechanism to profile and maintain 
detailed data access history for a long-term optimization  

Ø A comprehensive design and implementation of a high 
performance hybrid storage system 
﹣ improving performance for accesses to the high-cost data blocks, 
semantically-critical (file system metadata) blocks, and write-
intensive workloads with minimal changes to existing systems 

Introduction 

9 



l  Introduction 
l  SSD Performance Advantages 
l  High-Cost Data Blocks 
l Maintaining Data Access History 
l  The Design and Implementation of Hystor 
l  Evaluation 
l  Conclusion and Impression 

Agenda 

10 



l SSD vs. HDD 

SSD Performance Advantages 

11 

Intel® X25-E SSD  Seagate® Cheetah® HDD 
Capacity 32GB 73GB 
Interface SATA2 (3.0Gb/s) LSI® MegaRaid® 8704 SAS card  

Read Bandwidth 250MB/sec 125MB/sec 
Write Bandwidth 180MB/sec 125MB/sec 



l  Intel® Open Storage Toolkit* 
Ø generates four typical workloads: Random Read/Write, 
Sequential Read/Write) 

SSD Performance Advantages 

12 

*M. P. Mesnier. Intel open storage toolkit. http://www.sourceforge.org/projects/intel-iscsi 

RND Read/Write: 7.7 times and 28.5 higher bandwidths than on the HDD (Request size 4KB) 

28.5times 
7.7times 



l This experimental result shows 
Ø Achievable performance benefits are highly access 
patterns 

Ø   exceptionally high write performance on the SSD (up to 
194MB/sec) 

Ø Random write can achieve almost identical performance 
as sequential write 

Ø Writes on the SSD can quickly reach a rather high 
bandwidth (around 180MB/sec) with a relatively small 
request size (32KB) for both random and sequential 
workloads  

SSD Performance Advantages 

13 



l Two key issues that must be considered in 
the design of Hystor, based on these 
observations 
Ø Need to recognize workload access patterns to identify 
the most high-cost data blocks, especially those blocks 
being randomly accessed by small requests 
﹣ It cause the worst performance for HDDs.  

Ø To leverage the SSD as a write-back buffer to handle 
writes 
﹣ Need not to treat random writes specifically, since random/
sequential write performance are almost same 

SSD Performance Advantages 

14 



l  Introduction 
l  SSD Performance Advantages 
l  High-Cost Data Blocks 
l Maintaining Data Access History 
l  The Design and Implementation of Hystor 
l  Evaluation 
l  Conclusion and Impression 

Agenda 

15 



l Many workloads have a small data set 
Ø Contributing a large percentage of the 
aggregate latency in data access 

l Hystor’s critical task is 
Ø to identify the most performance-critical blocks 

High-Cost Data Blocks 

16 

Thus... 



l Prior work - Experiences in building a software-based 
SATF scheduler [Tech. Rep. ECSL-TR81, 2001.] -  
Ø  Maintaining an on-line hard disk model to predict the latency for 

each incoming request 

Ø  Heavily depending on precise hard disk modeling based on 
detailed specification data 
﹣  it is often unavailable in practice 

Ø  As the HDD internals become more complicated(e.g. disk 
cache), it’s difficult  
﹣  to accurately model a modern hard disk 
﹣  to precisely predict the I/O latency for each disk access 

Identifying high-cost blocks 

17 



l Author’s approach 
Ø Using a pattern-related metric as indicator to 
indirectly infer(≒ estimate) access cost without need 
of knowing the exact latencies 

Ø Associating each data block with a selected metric 
and update the metric value by observing access to 
the data block 

l The approach’s key issue 
Ø Selected metric should have a strong correlation to 
access latency 
﹣ to effectively estimate the relative access latencies 
associated to blocks 
﹣ to identify the relatively high-cost data blocks 

Identifying high-cost blocks 

18 



l Four candidates (Note considering their 
combinations) 
Ø Request size 
Ø Frequency 
Ø Seek distance 
Ø Reuse distance 

l  In order to evaluate how highly these 
candidates are correlated to access latencies, 
blktrace* tool is used 
Ø This tool collects I/O traces on an HDD for a variety 
of workloads 

Indicator Metrics 

19 
*Blktrace. http://linux.die.net/man/8/blktrace.  



l  Accumulated HDD latency of sectors sorted in descending 
order by using candidate metrics in TPC-H workload 

l  The closer a curve is to the latency curve, the better the 
corresponding metric is 
Ø  Frequency/Request Size is most effective one 

Indicator Metrics 

20 



l  Frequency: Temporal locality 
Ø This metric is used to avoid the cache pollution problem 
for handling weak-locality workload [USENIX’05] 

l  Request Size: Access pattern 
Ø The average access latency per block is highly correlated 
to request size 
﹣ Because a large request can effectively amortize the seek and 
rotational latency over many blocks  

Ø The request size also reflects workload access patterns 
﹣ the sequence of data accesses observed at the block device 
level is an optimized result of multiple upper-level components 
(e.g. the I/O scheduler attempts to merge consecutive small 
requests into a large one) 

Ø Small requests also tend to incur high latency  
﹣ Because they are more likely to be intervened by other requests  

Indicator Metrics ‒ Frequency/Request Size -  

21 
Frequency/Request Size metric performs consistently the best in 
various workloads and works well  



l  Introduction 
l  SSD Performance Advantages 
l  High-Cost Data Blocks 
l Maintaining Data Access History 
l  The Design and Implementation of Hystor 
l  Evaluation 
l  Conclusion and Impression 

Agenda 

22 



l To use the metric values to profile data 
access history, two critical challenges must 
be addressed 
Ø How to represent the metric values in a 
compact and efficient way  

Ø How to maintain such history information for 
each block of a large-scale storage space (e.g. 
Terabytes)  

Maintaining Access History 

23 



l The Block Table [FAST’05] 
Ø Similar to the page table used in virtual memory 
management  

Ø It has three levels 
﹣ Block Global Directory (BGD) 

•  represents the storage space segmented in units of 
regions 

﹣ Block Middle Directory (BMD)  
•  represents the storage space segmented in units of sub-
regions 

﹣ Block Table Entry (BTE) 
•  represents the storage space segmented in units of 
blocks 

Author’s Approach 

24 



The Block Table 

25 

00 
Logical Block Number (LBN) 

BGD BMD BTE 

BGD index BMD index BTE index 
11 01 

4KB page 

Name Feature 
Unique field (16-bit) Tracking the # of BTE entries belonging to 

data access information 
Counter field (16-bit) Recording data access information 
Flag field (16-bit) Recording other properties of a block (e.g. 

Whether a block is a metadata block) 



l  Inverse bitmap 
Ø A technique to encode the request size and 
frequency in the block table 

Ø When a block is accessed by a request of N 
sectors, an invers bitmap (b) is calculated using 
the following equation: 

Representing Indicator Metric 

26 



l  Inverse bitmap (b) 
Ø  representing the size for a given request  

l Counter value of each entry at each level 
of the block table 
Ø representing the indicator metric frequency/
request size  
﹣ Upon an incoming request, the counter of the 
corresponding entry is incremented by b 

Representing Indicator Metric 

27 



l  Introduction 
l  SSD Performance Advantages 
l  High-Cost Data Blocks 
l Maintaining Data Access History 
l  The Design and Implementation of Hystor 
l  Evaluation 
l  Conclusion and Impression 

Agenda 

28 



l Main Architecture 
Ø Three Major components: Remapper, Monitor, 
and Data mover 

The Design of Hystor 

29 

Memory 

File System 

Remapper 
Mapping  
Table 

Data 
Mover 

Block Device Driver 

Monitor 
Pseudo block device 

Remapping Plan 

Request 

HDD HDD SSD SSD 



l  Remapper: maintaining a mapping table to track 
the original location of blocks on the SSD  

Main Architecture 

30 

Memory 

File System 

Remapper 

Mapping  
Table 

Data 
Mover 

Block Device Driver 

Monitor 
Pseudo block device 

Remapping Plan 

Request 

HDD HDD SSD SSD 



l Monitor: collecting I/O requests and updates the 
block table to profile workload access patterns  

Main Architecture 

31 

Memory 

File System 

Remapper 

Mapping  
Table 

Data 
Mover 

Block Device Driver 

Monitor 
Pseudo block device 

Remapping Plan 

Request 

HDD HDD SSD SSD 

The monitor can run in either 
kernel mode or user mode 



l  Data mover: issuing I/O commands to the block 
devices and updating the mapping table 
accordingly to reflect the most recent changes  

Main Architecture 

32 

Memory 

File System 

Remapper 

Mapping  
Table 

Data 
Mover 

Block Device Driver 

Monitor 
Pseudo block device 

Remapping Plan 

Request 

HDD HDD SSD SSD 



l  Remap area 
Ø  maintaining the identified critical blocks, such as 

the high-cost data blocks and file system metadata 
blocks 

Ø  All requests, including both reads and writes, to the 
blocks in the remap area are directed to the SSD 

l  Write-back area 
Ø  a buffer to temporarily hold dirty data of incoming 

write requests  
Ø  All other requests are directed to the HDD 
Ø  Blocks in the write-back area are periodically 

synchronized to the HDD and recycled for serving 
incoming writes  

SSD Space Management 

33 

Remap  
Area 

Write-back 
Area 

SSD Space 

Metadata 



l Two types of blocks can be remapped to 
the SSD 
Ø the high-cost data blocks 
﹣ they are identified by analyzing data access history 
using the block table  

Ø file system metadata blocks 
﹣ they are identified through available semantic 
information in OS kernels  

Managing the Remap Area 

34 



A pseudo code of identifying candidate 
blocks(high-cost blocks) 

35 

  1 counter():   // the counter value of an entry  
  2 total_cnt(): // the aggregate value of counters of a block table page  
  3  
  4 sort_unique_asc():    // sort entries by unique values  
  5 sort_counter_dsc():  // sort entries by counter values  
  6 quota:                     // the num. of available SSD blocks  
  7 sort_unique_asc(bgd_page);  /* sort bgd entries */  
  8 bgd_count = total_cnt(bgd_page); 
  9 for each bgd entry && quota > 0; do  
10     bmd_quota = quota*counter(bgd)/bgd_count;  /* get the bmd page */  
11     bgd_count -= counter(bgd); 
12     quota -= bmd_quota;  
13  
14     bmd_page = bgd->bmd;  
15     sort_unique_asc(bmd_page);  /* sort bmd entries */  
16     bmd_count = total_cnt(bmd_page); 
17     for each bmd entry && bmd_quota > 0; do  
18         bte_quota = bmd_quota*counter(bmd)/bmd_count;  
19         bmd_count -= counter(bmd); 
20         bmd_quota -= bte_quota;  
21  
22         bte_page = bmd->bte;  
23         sort_counter_dsc(bte_page); 
24         for each bte entry && bte_quota > 0; do  
25             add bte to the update(candidate) list;  
26             bte_quota --;  
27         done  
28         bmd_quota += bte_quota;  /* unused quota */  
29     done  
30     quota += bmd_quota; /* unused quota */  
31 done  

•  Recursively determination of the 
hottest blocks in the region 

•  Allocate SSD space to the regions 
correspondingly  



l  A conservative approach to leverage the 
information that is already available in the existing 
OS kernels.  
Ø To modify a single line at the block layer to leverage this 
available information by tagging incoming requests for 
metadata blocks  

Ø Need not to change to file systems or applications 

Ø When the remapper receives a request,  
﹣ the incoming request’s tags are checked  
﹣ the requested blocks are marked in the block table (using the flag 
field of BTE entries)  

Identifying Metadata Blocks 

36 



l  The blocks in the write-back area are managed in 
two lists  
Ø  clean list  
Ø dirty list  

l When a write request arrives,  
Ø ① SSD blocks are allocated from clean list 
Ø ② The new dirty blocks are written into the SSD and 
added onto the dirty list 

Ø ③ If the # of dirty blocks in the write-back area reaches a 
high watermark, these block are written-back to the HDD 
until reaching a low water-mark  
﹣ There is a counter to track the # of dirty blocks in the write-back 
area 

Ø ④ Cleaned blocks are placed onto the clean list for reuse  

Managing the Write-back Area  

37 



l  Hystor is prototyped with about 2,500 Lines of code 
Ø  In the Linux kernel 2.6.25.8 as a stand-alone kernel module  

l  Remapper  
Ø  Based on the software RAID 

l  Monitor (No need any modifications in the Linux kernel) 
Ø  User-mode 

﹣ implemented as a user-level daemon thread with about 2,400 lines 
of code 

Ø  Kernel-mode 
﹣ It consists of 4,800 lines of code 

l  Kernel Changes  
Ø  only about 50 lines of code are inserted in the stock Linux 

kernel 

Implementation 

38 



l  Introduction 
l  SSD Performance Advantages 
l  High-Cost Data Blocks 
l Maintaining Data Access History 
l  The Design and Implementation of Hystor 
l  Evaluation 
l  Conclusion and Impression 

Agenda 

39 



l  Experimental System 

Evaluation 

40 

CPU 2.66GHz Intel® CoreTM 2 Quad  
Main Memory 4GB 
Mother Board Intel® D975BX  

Intel® X25-E SSD  Seagate® Cheetah® HDD 
Capacity 32GB 73GB 
Interface SATA2 (3.0Gb/s) LSI® MegaRaid® 8704 SAS card  

Read Bandwidth 250MB/sec 125MB/sec 
Write Bandwidth 180MB/sec 125MB/sec 

OS FedoraTM Core 8 with the Linux kernel 2.6.25.8  
File System Ext3 (default configuration) 

Linux I/O scheduler No-op (for SSDs), CFQ (for HDDs) 
On-device Caches Enable (all the storage devices) 

The Other Configurations Default Values 



l Benchmark: Postmark* 
Ø small random data accesses-intensive 

Evaluation - execution time - 

41 
*Postmark. A new file system benchmark (1997).  
 http://www.netapp.com/tech_library/3022.html  

The worst case 
(4.2 times slower) •  SSD Size: 20%, 40%, 60%, 80%, and 100% of 

the working-set size (X-axis) 

•  Normalizing to execution time of running on 
the SSD-only system (Y-axis) 

•  29% reduction (SSD size 310MB) 



l Benchmark: Postmark 
l Y-axis: Hit ratio of I/O requests observed at 
the remapper (hit: A request to blocks resident in the SSD) 

Evaluation - hit ratio -  

42 

•  Hit ratio is improved from 79% to 91% 
(SSD size 310MB) 



l Benchmark: Email* 
Ø  intensive synchronous writes with different append sizes and locations 

based on realistic mail distribution function 
Ø  a more skewed distribution of latencies 
Ø  Most data accesses are small random writes 

Evaluation 

43 

* S. Shah and B. D. Noble. A study of e-mail patterns. In Software Practice and Experience, volume 37(14), 2007.  

Hit ratio Execution time 



l Benchmark: Email* 
Ø  intensive synchronous writes with different append sizes and locations 

based on realistic mail distribution function 
Ø  a more skewed distribution of latencies 
Ø  Most data accesses are small random writes 

Evaluation 

44 

* S. Shah and B. D. Noble. A study of e-mail patterns. In Software Practice and Experience, volume 37(14), 2007.  

Hit ratio Execution time 

18.8 times slower 



l Benchmark: Email* 
Ø  intensive synchronous writes with different append sizes and locations 

based on realistic mail distribution function 
Ø  a more skewed distribution of latencies 
Ø  Most data accesses are small random writes 

Evaluation 

45 

* S. Shah and B. D. Noble. A study of e-mail patterns. In Software Practice and Experience, volume 37(14), 2007.  

Hit ratio Execution time 

With no write-back area, the performance is slightly 
worse than the HDD-only system  
(SSD size 27MB: 20% of the working-set size) 

12.4% 



l Benchmark: Email* 
Ø  intensive synchronous writes with different append sizes and locations 

based on realistic mail distribution function 
Ø  a more skewed distribution of latencies 
Ø  Most data accesses are small random writes 

Evaluation 

46 

* S. Shah and B. D. Noble. A study of e-mail patterns. In Software Practice and Experience, volume 37(14), 2007.  

Hit ratio Execution time 

With no write-back area, the performance is slightly 
worse than the HDD-only system  
(SSD size 27MB: 20% of the working-set size) 

12.4% 
Because of 
•  additional I/O operations  
•  increased probability of split requests  



l Benchmark: Email* 
Ø  intensive synchronous writes with different append sizes and locations 

based on realistic mail distribution function 
Ø  a more skewed distribution of latencies 
Ø  Most data accesses are small random writes 

Evaluation 

47 

* S. Shah and B. D. Noble. A study of e-mail patterns. In Software Practice and Experience, volume 37(14), 2007.  

Hit ratio Execution time 

the write-back area 
behaves like a small 
cache to capture some 
short-term data reuse 



l Benchmark: TPC-H Q1 (query 1 from the TPC-H 
database benchmark suite)* 
Ø more sequential data accesses and less I/O intensive 
than the other workloads 

Evaluation 

48 Execution time 

* Transaction Processing Performance Council. TPC Benchmark (2008) http://www.tpc.org/tpch/  

Hit ratio 



l Benchmark: TPC-H Q1 (query 1 from the TPC-H 
database benchmark suite)* 
Ø more sequential data accesses and less I/O intensive 
than the other workloads 

Evaluation 

49 Execution time 

* Transaction Processing Performance Council. TPC Benchmark (2008) http://www.tpc.org/tpch/  

Hit ratio 

Only 16% slower 



l Benchmark: TPC-H Q1 (query 1 from the TPC-H 
database benchmark suite)* 
Ø more sequential data accesses and less I/O intensive 
than the other workloads 

Evaluation 

50 Execution time 

* Transaction Processing Performance Council. TPC Benchmark (2008) http://www.tpc.org/tpch/  

Hit ratio 

2-5% slowdown compared 
to running on HDD  

About 30~40% hit ratio 

When the SSD size is small, the write-back 
area may introduce extra traffic  



l  Hystor identifies metadata blocks of file systems 
and remaps them to the SSD 
Ø How does such an optimization improve performance? 

l  Comparison the performance of Hystor with and 
without optimization for file system metadata 
blocks 
Ø With optimization: Hystor-Metadata  
Ø Without optimization: Hystor-No-Metadata 

Evaluation 

51 



l  Intel® Open Storage Toolkit 
Ø generating two workloads, which randomly read 4KB data 
each time until 16MB and 32MB of data are read  

Evaluation 

52 

•  Both approaches eventually can 
speed up the two workloads by 
about 20 seconds  

•  Hystor-Metadata can achieve high 
performance with a much smaller 
SSD space  

•  For the workload reading 32MB 
data, Hystor-Metadata identifies 
and remaps nearly all indirect 
blocks to the SSD with just 32MB 
of SSD space  



l  This result shows 
Ø  optimization for metadata blocks can effectively improve 
system performance with only a small amount of SSD 
space 
﹣ especially for metadata-intensive workloads  

Ø  high-cost cold misses can be avoided 
﹣ due to proactively identifying these semantically critical 
blocks (file system metadata blocks) at an early stage  

Evaluation 

53 



l  Scrubbing - Dirty blocks buffered in the write-back area 
have to be written back to the HDD in the background 

l  Each scrub operation can cause two additional I/O 
operations  
Ø A read from the SSD  
Ø A write to the HDD  

l  How does scrubbing affect performance? 
Ø Here, email is used for the evaluation 

﹣ Because of the worst case for scrubs 

Evaluation 

54 



l  X-axis: Various configurations of the SSD size (% of the 
working-set size) and HDD-only system 

l  Y-axis: Request arrival rate in email 
Ø  Demand: requests by upper-layer components 
Ø  Scrubs: requests by internal scrubbing daemon 

Evaluation 

55 



l  X-axis: Various configurations of the SSD size (% of the 
working-set size) and HDD-only system 

l  Y-axis: Request arrival rate in email 
Ø  Demand: requests by upper-layer components 
Ø  Scrubs: requests by internal scrubbing daemon 

Evaluation 

56 

High rate reasons 
•  a large request in Hystor 

may split into several 
small ones to different 
devices  

•  two additional I/O 
operations are needed 
for each scrub  



l  X-axis: Various configurations of the SSD size (% of the 
working-set size) and HDD-only system 

l  Y-axis: Request arrival rate in email 
Ø  Demand: requests by upper-layer components 
Ø  Scrubs: requests by internal scrubbing daemon 

Evaluation 

57 

•  Increasing to 80% of the 
working-set size, the arrival 
rate of scrub requests 
drops by nearly 25% on the 
SSD due to less frequent 
scrubbing 

•  The arrival rate of demand 
requests increases 
•  Reduction of execution 

time 
•  The # of demand 

requests remains 
unchanged 



l  X-axis: Various configurations of the SSD size (% of the 
working-set size) and HDD-only system 

l  Y-axis: Request arrival rate in email 
Ø  Demand: requests by upper-layer components 
Ø  Scrubs: requests by internal scrubbing daemon 

Evaluation 

58 

•  These requests happen in 
the background  
•  The performance 

impact on the 
foreground jobs is 
minimal  



l This result shows 
Ø Although a considerable increase of request arrival rate 
is resident on both storage devices, conducting 
background scrubbing causes minimal performance 
impact, even for write-intensive workloads.  

Evaluation 

59 



l  Chunk size 
Ø  Large: desirable for reducing memory overhead of the 
mapping table and the block table  

Ø Small: effectively improving utilization of the SSD space 
﹣ a large chunk may contain both hot and cold data 

l  So, how does chunk size affect performance? 

Evaluation 

60 



l  Chunk size: 4KB(8 sector), 16KB(32 sector) 
l Write-back fraction: 20% 

Evaluation 

61 

•  With a large chunk size (16KB), the 
performance of email degrades 
significantly 
•  most of the requests in email 

are small 
•  hot and cold data could co-

exist in a large chunk → miss 
rate increases 



l This result shows 
Ø For a small-capacity SSD 
﹣ a small chunk size should be used to avoid wasting 
precious SSD space  

Ø For a large-capacity SSD 
﹣ It’s possible to use a large chunk size and afford the 
luxury of increased internal fragmentation in order to 
reduce overhead 

l  In general 
Ø a small chunk size (e.g. 4KB) is normally 
sufficient for optimizing performance 
﹣  So is Hystor (default 4KB) 

62 

Evaluation 



l  Introduction 
l  SSD Performance Advantages 
l  High-Cost Data Blocks 
l Maintaining Data Access History 
l  The Design and Implementation of Hystor 
l  Evaluation 
l  Conclusion and Impression 

Agenda 

63 



l  Need to find the fittest position of SSDs in the existing 
systems to strike a right balance between performance and 
cost  

l  This work shows 
Ø  It’s possible to identify the data that are best suitable to be held 

in SSD by using a simple yet effective metric  
Ø  High-cost data blocks can be efficiently maintained in the block 

table at a low cost  
Ø  SSDs should play a major role in the storage hierarchy by 

adaptively and timely retaining performance- and semantically-
critical data  

Ø  It’s also effective to use SSD as a write-back buffer for 
incoming write requests  

Ø  Hystor can effectively leverage the performance merits of SSDs 
with minimized system changes  

Conclusion 

64 



l Pros 
Ø Exploratory evaluations were executed in detail 
﹣ E.g. SSD performance, Indicator Metric... 

Ø A lot of detailed evaluation results about Hystor 
Ø Simple yet smart approach to improve system 
performance 

l Cons 
Ø Few figures (Section5, Section6) 
Ø I would like to know how different a hardware 
implementation is 

Impression 

65 


