Mon. December 23rd, 2013
@High Performance Computing Class _I'ﬂl(/ﬂ' 1= ff——

Pursuing Excellence

Hystor: Making the Best Use of Solid
State Drives in High Performance
Storage Systems

25th International Conference on Supercomputing
(ICS2011), May 31 - June 4, 2011
Sponsored by ACM/SIGARCH

Author: Feng Chent David Koufatyt Xiaodong Zhangtt
T Circuits and Systems Research Intel Labs

Tt Dept. of Computer Science & Engineering

The Ohio State University

Presenter: Ryohei Kobayashi (13D38025)

The Selected Paper

® [CS: one of the top conference

& Rodemic | o |

Advanced Search
Authors » Academic > Computer Science > Distributed & Parallel Computing
Publications » Top conferences in distributed & parallel computing
Conferences » 1-100 of 203 results
Journals » All Years - 1 2 3]
Keywords » - = "
Conferences Publications | Field Rating x
Organizations »
ICDCS - International Conference on Distributed Computing Systems 2364 86
PODC - Symposium on Principles of Distributed Computing 1520 83
SC - Supercomputing Conference 3066 81
IPDPS(IPPS) - International Parallel and Distributed Processing 61
Symposium/Intemational Parallel Processing Symposium
o ICS - International Conference on Supercomputing 1180 61
HPDC - IEEE Intemnational Symposium on High Performance Distributed Computing 1010 61
FTCS - Symposium on Fault-Tolerant Computing 911 61
ICPP - Interational Conference on Parallel Processing 3247 59
SPAA - ACM Symposium on Parallel Algorithms and Architectures 931 59
NSDI - Networked Systems Design and Implementation 288 58
. B e S_t P a p e r AW a r d PACT - International Conference on Parallel Architectures and Compilation Techniques 802 48

@ " "Hystor: Making the Best Use of Solid State Drives in High Performance Storage Systems",
Proceedings of 25th ACM International Conference on Supercomputing (ICS 2011), Tucson,
Arizona, May 31 - June 4, 201 1. Best Paper Award .

Abstract

® [his paper shows how to make the best use of
SSD in storage systems with insights based on the
designh and implementation of a high performance
hybrid storage system, called Hystor.

» SSD should play a major role as an independent storage
where the best suitable data are adaptively and timely
migrated in and retained.

» It can also be effective to serve as a write-back buffer.

Abstract - What is the Hystor? -

® Hystor: A Hybrid Storage System

® Hystor manages both SSDs and HDDs as one single block
device with minimal changes to existing OS kernels.

® Monitoring I/O access patterns at runtime
» Hystor can effectively identify following blocks and store them in SSD

— (T)Blocks that can result in long latencies
— (2)Blocks that are semantically critical (e.g. file system metadata)

® In order to further leverage the exceptionally high
performance of writes in the state-of-the-art SSD, SSD is
also used as write-back buffer
» To speed up write requests

® This Study on Hystor implemented in the Linux kernel
2.6.25.8 shows

» it can take advantage of the performance merits of SSDs with only a
few lines of changes to the stock Linux kernel.

Agenda

® [ntroduction

® SSD Performance Advantages

® High-Cost Data Blocks

® Maintaining Data Access History

® [he Design and Implementation of Hystor
® Evaluation

® Conclusion and Impression

Agenda

® [ntroduction =g

® SSD Performance Advantages

® High-Cost Data Blocks

® Maintaining Data Access History

® [he Design and Implementation of Hystor
® Evaluation

® Conclusion and Impression

Introduction

® 5SSDs are becoming an important part of high-performance
storage systems

« A flash-based supercomputer [ASPLOS'09]
« Adopting 256TB of flash memory as storage*

« $20 million funding from the National Science
Foundation (NSF)

‘Gordon’ Supercomputer
@San Diego Supercomputer Center(SDSC)

* http://www.internetnews.com/hardware/article.ohp/3847456

6

Introduction

[————

® SSD's disadvantages

» Relatively high price and low capacity
—E.g. around $12/GB (32GB Intel® X25-E SSD)

« 100 times more expensive than a typical commodity

HDD
$/MB: Solid State
 vs.HDD
$100.00
% $10.00
2 s i o, gy http://www.storagesearch.com/
o g SR - .
g’- mﬁ"@'\f@b@\ .‘J ‘:"“?{'.:;‘)\\‘ }\\ :::}/ﬁ)\ : semico art]html
o —+ DRAM .
% $0.01 —-=-Flash \
z & HOD i

$0.00 e v

Introduction

® [t's Unsuitable to built a storage system
completely based on SSDs

» Especially, for most commercial and daily operated

systems
[5 j Thus...

® Authors believe that SSDs should be a means to
enhance the existing HDD-based storage
» Only by finding the fittest position in storage systems, it's
possible to strike a right balance between performance
and cost

Introduction

® Contributions of this work

» ldentifying an effective metric to represent the
performance-critical blocks by considering both temporal
locality and data access patterns

» Design of an efficient mechanism to profile and maintain
detailed data access history for a long-term optimization

» A comprehensive design and implementation of a high
performance hybrid storage system

— improving performance for accesses to the high-cost data blocks,
semantically-critical (file system metadata) blocks, and write-
intensive workloads with minimal changes to existing systems

Agenda

® Introduction

® SSD Performance Advantages =g

® High-Cost Data Blocks

® Maintaining Data Access History

® [he Design and Implementation of Hystor
® Evaluation

® Conclusion and Impression

10

SSD Performance Advantages

® 55D vs. HDD

Intele X25-E SSD

Seagate® Cheetah® HDD

Capacity 32GB 73GB

Interface SATAZ (3.0Gb/s) | LSI® MegaRaid® 8704 SAS card
Read Bandwidth 250MB/sec 125MB/sec
Write Bandwidth 180MB/sec 125MB/sec

11

SSD Performance Advantages

*M. P. Mesnier. Intel open storage toolkit. http://www.sourceforge.org/projects/intel-iscsi

P — D

Bandwidth (MB/sec)

® Intel® Open Storage Toolkit™

» generates four typical workloads: Random Read/Write,
Sequential Read/Write)

300

200 T T T T

180 f .
250 j 160
200 1 3 140 1 T
E 120 ><>< """" >< """"""""" >< """"""""""""""""""""" >< .
=3
150 - < 100 | 4
S
: 2 80 i
. C
100) . g I
/ VVVVVVVVVVVVVVVVVV I + . ' +
o B _ o $SD-Read-SEQ & 40 28.5jglmes SSD-Write-SEQ —&— |
V7. [times SSD-Read-RND -~ : SSD-Write-RND -7
y HDD-Read-SEQ - < 20 A HDD-Write-SEQ < 7]
. Y+ . . HDD-Read-RND -+ o i+ . . . HDD-Write-RND
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Request Size (KB) Request Size (KB)
(a) Reads (b) Writes

RND Read/Write: 7.7 times and 28.5 higher bandwidths than on the HDD (Request size 4KB) 19

SSD Performance Advantages

® [his experimental result shows

» Achievable performance benefits are highly access
patterns

» exceptionally high write performance on the SSD (up to
194MB/sec)

» Random write can achieve almost identical performance
as sequential write

» Writes on the SSD can quickly reach a rather high
bandwidth (around 180MB/sec) with a relatively small
request size (32KB) for both random and sequential
workloads

13

SSD Performance Advantages

® [wo key issues that must be considered in

the design of Hystor, based on these

observations

» Need to recognize workload access patterns to identify
the most high-cost data blocks, especially those blocks
being randomly accessed by small requests

— It cause the worst performance for HDDs.

» To leverage the SSD as a write-back buffer to handle
writes

— Need not to treat random writes specifically, since random/
sequential write performance are almost same

14

Agenda

® [ntroduction

® SSD Performance Advantages

® High-Cost Data Blocks =%

® Maintaining Data Access History

® [he Design and Implementation of Hystor
® Evaluation

® Conclusion and Impression

15

High-Cost Data Blocks

® Many workloads have a small data set

» Contributing a large percentage of the
aggregate latency in data access

% Thus...

® Hystor's critical task is
» to identify the most performance-critical blocks

16

ldentifying high-cost blocks

® Prior work - Experiences in building a software-based
SATF scheduler [Tech. Rep. ECSL-TRE1, 2001.] -

» Maintaining an on-line hard disk model to predict the latency for
each incoming request

/> Heavily depending on precise hard disk modeling based o\n @
detailed specification data
— it is often unavailable in practice

» As the HDD internals become more complicated(e.g. disk
cache), it’s difficult
— to accurately model a modern hard disk

\\ — to precisely predict the 1/O latency for each disk access /

17

ldentifying high-cost blocks

® Author’s approach

» Using a pattern-related metric as /indicator to
iIndirectly infer(= estimate) access cost without need
of knowing the exact latencies

» Associating each data block with a selected metric
and update the metric value by observing access to

the data block

® [he approach’s key issue
» Selected metric should have a strong correlation to

access latency

— 1o effectively estimate the relative access latencies
associated to blocks

—to identify the relatively high-cost data blocks

18

Indicator Metrics

® Four candidates (Note considering their
combinations)

» Request size

» Frequency

> Seek distance
» Reuse distance

® |In order to evaluate how highly these |
candidates are correlated to access latencies,
blktrace® tool Is used

» This tool collects I/O traces on an HDD for a variety
of workloads

*Blktrace. http://linux.die.net/man/8/blktrace.

19

Indicator Metrics

® Accumulated HDD latency of sectors sorted in descending
order by using candidate metrics in TPC-H workload

® T[he closer a curve is to the latency curve, the better the
corresponding metric is

» Frequency/Request Size is most effective one

100
90
—~ 80
2
o 70 F
Q0
2
[60
i
Y— 50 B
S}
S
S 40
IS
& sofr [A
Y v8/ 7 Latency —+—
o0y ' Frequency/Sizz SEEVER.
/ﬂ*///’ﬂ Frequency ------
10 H/2/ Request Size & _
W A Seek Distance --m-
0 e i S . Reuse Distance - o -

0 10 20 30 40 50 60 70 80 90 100
Percentage of Sectors (%)

Indicator Metrics - Frequency/Request Size -

® Frequency: Temporal locality

» This metric is used to avoid the cache pollution problem
for handling weak-locality workload [USENIX'05]

® Request Size: Access pattern

» The average access latency per block is highly correlated
to request size
— Because a large request can effectively amortize the seek and
rotational latency over many blocks
» The request size also reflects workload access patterns

— the sequence of data accesses observed at the block device
level is an optimized result of multiple upper-level components
(e.g. the I/O scheduler attempts to merge consecutive small
requests into a large one)

» Small requests also tend to incur high latency
— Because they are more likely to be intervened by other requests

Frequency/Request Size metric performs consistently the best in
various workloads and works well

21

Agenda

® [ntroduction

® SSD Performance Advantages

® High-Cost Data Blocks

® Maintaining Data Access History =g

® [he Design and Implementation of Hystor
® Evaluation

® Conclusion and Impression

22

Maintaining Access History

® [0 use the metric values to profile data
access history, two critical challenges must
be addressed

» How to represent the metric values in a
compact and efficient way

» How to maintain such history information for
each block of a large-scale storage space (e.g.
Terabytes)

23

Author’'s Approach

® The Block Table [FAST 03]

» Similar to the page table used in virtual memory
management

> It has three levels

—Block Global Directory (BGD)
« represents the storage space segmented in units of
regions
— Block Middle Directory (BMD)
« represents the storage space segmented in units of sub-
regions
—Block Table Entry (BTE)

« represents the storage space segmented in units of
blocks

24

The Block Table

LogiCal Block Number (I_BN) 4KB page

00 11 Ol
BGD index BMD index BTE index

. T ———

. F—————

Name Feature

Unique field (16-bit) Tracking the # of BTE entries belonging to
data access information

1
1 Counter field (16-bit) Recording data access information
1

Flag field (16-bit) Recording other properties of a block (e.qg.
Whether a block is a metadata block)

Representing Indicator Metric

® Inverse bitmap

» A technique to encode the request size and
frequency in the block table

» When a block is accessed by a request of N
sectors, an invers bitmap (b) is calculated using
the following equation:

h — 2maa¢(0,7— | logo N |)

26

Representing Indicator Metric

® Inverse bitmap (b)
» representing the size for a given request

® Counter value of each entry at each level
of the block table

» representing the indicator metric frequency/
request size

— Upon an incoming request, the counter of the
corresponding entry is incremented by b

27

Agenda

® [ntroduction

® SSD Performance Advantages

® High-Cost Data Blocks

® Maintaining Data Access History

® The Design and Implementation of Hystor =g
® Evaluation

® Conclusion and Impression

28

The Design of Hystor

® Main Architecture

» Three Major components: Remapper, Monitor,
and Data mover

Memory

v

File System

__

Pseudo block device i Request

> Monitor

' Data '
- <> <
! Remapper Mover 1 Remapping Plan
| Mapping !
} Table }
v

- ¥ L
HDD | m SSD SSD

Main Architecture

® Remapper: maintaining a mapping table to track

the original location of blocks on the SSD

Memory

v

File System

Pseudo block device | Request

Data
Mover

> Monitor

. v

‘| Remapper [¢»— <>
Mapping
Table

Remapping Plan

!

SSD

SSD

30

Main Architecture

® Monitor: collecting |/O requests and updates the
block table to profile workload access patterns

Memory

v

File System

Pseudo block device | Request

The monitor can run in either
kernel mode or user mode

Remapper |[¢—»—7<>

Data
Mover

> Monitor

! Mapping
i Table

Remapping Plan

!

SSD

SSD 31

Main Architecture

® Data mover: issuing I/O commands to the block

devices and updating the mapping table

accordingly to reflect the most recent changes

Memory

v

File System

Pseudo block device | Request

Data
Mover

> Monitor

. v

| Remapper [¢»— <>
Mapping
Table

Remapping Plan

!

SSD

SSD

32

SSD Space Management

® Remap area

» maintaining the identified critical blocks, such as
the high-cost data blocks and file system metadata
= blocks
emap

Area » All requests, including both reads and writes, to the
blocks in the remap area are directed to the SSD

Metadata | @ \Nrite-back area

» a buffer to temporarily hold dirty data of incoming
write requests

» All other requests are directed to the HDD

SSD Space » Blocks in the write-back area are periodically

synchronized to the HDD and recycled for serving
iIncoming writes

Write-back
Area

33

Managing the Remap Area

® [wo types of blocks can be remapped to
the SSD

» the high-cost data blocks

—they are identified by analyzing data access history
using the block table

» file system metadata blocks

—they are identified through available semantic
iInformation in OS kernels

34

A pseudo code of identifying candidate
blocks(high-cost blocks)

1 counter(): // the counter value of an entry
2 total_cnt(): // the aggregate value of counters of a block table page
3
4 sort_unique_asc(): // sort entries by unique values
5 sort_counter_dsc(): // sort entries by counter values
6 quota: // the num. of available SSD blocks
7 sort_unique_asc(bgd_page); /* sort bgd entries */
8 bgd_count = total_cnt(bgd_page);
9 for each bgd entry && quota > O; do
10 bmd_quota = quota*counter(bgd)/bgd_count; /* get the bmd page */
11 bgd_count -= counter(bgd);
12 quota -= bmd_quota;
13
14 bmd_page = bgd->bmd;
15 sort_unique_asc(bmd_page); /* sort bmd entries */
16 bmd_count = total_cnt(bmd_page);
17 for each bmd entry && bmd_quota > 0; do
18 bte_quota = bmd_quota*counter(bmd)/bmd_count;
19 bmd_count -= counter(omd);
20 bmd_qguota -= bte_quota;
21
22 bte_page = bmd->bte;
23 sort_counter_dsc(bte_page);
24 for each bte entry && bte_quota > O; do
25 add bte to the update(candidate) list;
26 bte_quota -
27 done
28 bmd_quota += bte_quota; /* unused quota */
29 done
30 quota += bmd_quota; /* unused quota */
31 done

SSD Size: 1000 Blocks

Step (1): Quota =
1000*80/(80+10+10) = 800

12 80

20 10

31 10
BGD

Step (2): Quota =

OXFFFF

10

OXFFFF

20

OXFFOF

10

800 * 40 /(40+30+10) = 400
. m /
3 40

BTE

OXFFFF

4 30
BMD \

OxFFFO

10

OXFFFF

10

OXFFFF

BTE

« Recursively determination of the
hottest blocks in the region

« Allocate SSD space to the regions
correspondingly

35

ldentifying Metadata Blocks

P —

® A conservative approach to leverage the
iInformation that is already available in the existing
OS kernels.

» To modify a single line at the block layer to leverage this
available information by tagging incoming requests for
metadata blocks

» Need not to change to file systems or applications

» When the remapper receives a request,
— the incoming request’s tags are checked

— the requested blocks are marked in the block table (using the flag
field of BTE entries)

36

Managing the Write-back Area

[————

® [he blocks in the write-back area are managed In
two lists

» clean list
» dirty list

® \When a write request arrives,
» (D SSD blocks are allocated from clean list

> (@ The new dirty blocks are written into the SSD and
added onto the dirty list

> @ If the # of dirty blocks in the write-back area reaches a
high watermark, these block are written-back to the HDD
until reaching a low water-mark

— There is a counter to track the # of dirty blocks in the write-back
area

> @ Cleaned blocks are placed onto the clean list for reuse

37

Implementation

® Hystor is prototyped with about 2,500 Lines of code

» In the Linux kernel 2.6.25.8 as a stand-alone kernel module
® Remapper

» Based on the software RAID
® Monitor (No need any modifications in the Linux kernel)

» User-mode

— implemented as a user-level daemon thread with about 2,400 lines
of code

» Kernel-mode
— |t consists of 4,800 lines of code
® Kernel Changes

» only about 50 lines of code are inserted in the stock Linux
kernel

38

Agenda

® [ntroduction

® SSD Performance Advantages

® High-Cost Data Blocks

® Maintaining Data Access History

® [he Design and Implementation of Hystor
® Evaluation =

® Conclusion and Impression

39

Evaluation

® Experimental System

CPU

2.66GHz Intel® Core™ 2 Quad

Main Memory

4GB

Mother Board

Intel® D975BX

Intel® X25-E SSD Seagate® Cheetah® HDD
Capacity 32GB 73GB
Interface SATAZ2 (3.0Gb/s) | LSI® MegaRaid® 8704 SAS card
Read Bandwidth 250MB/sec 125MB/sec
Write Bandwidth 180MB/sec 125MB/sec

0S

Fedora™ Core 8 with the Linux kernel 2.6.25.8

File System

Ext3 (default configuration)

Linux /O scheduler

No-op (for SSDs), CFQ (for HDDs)

On-device Caches

Enable (all the storage devices)

The Other Configurations

Default Values

40

Evaluation - execution time -

® Benchmark: Postmark®
» small random data accesses-intensive

4.5
4 o ", The worst case - -
TR _ « SSD Size: 20%, 40%, 60%, 80%, and 100% of
35 | 0w, (42 times slowen)) the working-set size (X-axis)
e 3t T |
E "%.‘._iijf;.\ « Normalizing to execution time of running on
T 25| " the SSD-only system (Y-axis)
N R
T 2F . : .
g ...::;-;:....,i\-\29% reduction (SSD size 310MB)
S 15} “E
1TF HDD
0% WB -
0.5 [20% WB >~
O 300/° VIVB %K

50 100 150 200 250 300 350
SSD Size (MB)

*Postmark. A new file system benchmark (1997).
http://www.netapp.com/tech library/3022.html 41

Evaluation - hit ratio -

® Benchmark: Postmark

® Y-axis: Hit ratio of |/O requests observed at
the remapper (hit: A request to blocks resident in the SSD)

100

80 | . Hit ratio is improved from 79% to 91% J

\L (SSD size 310MB)

()]
o

N
o

Hit Ratio (%)

20 F

50 100 150 200 250 300 350
SSD Size (MB) 42

Evaluation

*S. Shah and B. D. Noble. A study of e-mail patterns. In Software Practice and Experience, volume 37(14), 2007.

® Benchmark: Emaif

» Intensive synchronous writes with different append sizes and locations
based on realistic mail distribution function

» a more skewed distribution of latencies
» Most data accesses are small random writes

20 -1‘"\\\: T T T T 100 ___r___.;;-‘—"'x“:'““‘H‘“J*-U‘““‘““*‘w’ﬂ g §
18 | T - b S
16 | Ty] 80 |
o 14 } .
£ Q
12 F e 60 F
1ol * =
E o \ ¢ 40
8 - I = -
Z 6t %
4 I HDD T 20 i
0% WB - Ko, 0% WB —+—
2 F20% WB - XKoo 20% WB X
o 307 W/B X : , 0 30% WB K-

20 40 60 80 100

20

80 100 120

SSD Size (MB)
Execution time

SSD Size (MB)
Hit ratio 43

Evaluation

*S. Shah and B. D. Noble. A study of e-mail patterns. In Software Practice and Experience, volume 37(14), 2007.

® Benchmark: Emaif

» Intensive synchronous writes with different append sizes and locations
based on realistic mail distribution function

» a more skewed distribution of latencies
» Most data accesses are small random writes

20 —f-\\- T T T T T
18 | \ -
16 | 1‘8~.\8ﬂrt|mes slower.
o 14 | h]
£
S 2}]
%
10 by .
g 8T ?.:.;__.:: % 1
g 6t % \\\ i
4 I HDD " li
0% WB -+ W,
2 [20% WB ¢ e
feoewe x-
20 40 60 80 100 120

SSD Size (MB)
Execution time

100

»
o

N
o

Hit Ratio (%)

20

..r-,-;:--—éKL L) " Suvsrees Y T
%_-;; ----
- 0% WB —+—
20% WB -—--3----
. 1 1 300/0 \./VB """ ; x -----
20 40 60 80 100 120
SSD Size (MB)
Hit ratio

Evaluation

*S. Shah and B. D. Noble. A study of e-mail patterns. In Software Practice and Experience, volume 37(14), 2007.

® Benchmark: Emaif

» Intensive synchronous writes with different append sizes and locations

based on realistic mail distribution function
» a more skewed distribution of latencies
» Most data accesses are small random writes

20 100 R R R g

18 |] xe

16 | g i 80 | /
o 141 N .
Sz} With no write-back area, the performance is slightly .
S0}y | worse than the HDD-only system
£ st | (SSD size 27MB: 20% of the working-set size)]
g 6 i %-...‘.?:f.:::::::::.‘% N

Al HV[\)/[B) L R ” ok -]

0% WB - Ko, N 0% WB —+—
2 [20% WB -3 - ©12.4% 20% WB -3
o [30%WB X . . . 0 . . 30% WB -
20 40 60 80 100 120 140 20 40 60 80 100 120

SSD Size (MB)
Execution time

SSD Size (MB)
Hit ratio

140

45

Evaluation

*S. Shah and B. D. Noble. A study of e-mail patterns. In Software Practice and Experience, volume 37(14), 2007.

® Benchmark: Emaif

» Intensive synchronous writes with different append sizes and locations
based on realistic mail distribution function

» a more skewed distribution of latencies
» Most data accesses are small random writes

20 Frk: T T T T 100 ..;;;:;—_;;_____ [VRSRRE Sl Sl vy |

18 e] x

16 | + - 80 | /
o 141 “ -
Sz} With no write-back area, the performance is slightly .
S0}y | worse than the HDD-only system
g gl ™ (SSD size 27MB: 20% of the worklng -set size) :
g | _J/

6 -

.|l HOD Because of |

0% WB 41 o i 0% WB —+—
5 Losae W _addltlcnal /O ope.r_atlons | % W8 ——
o [30%WB X1 increased probability of split requests | 30% wB -—x--
20 40 60 80 100 120 140 v20 40 60 80 100 120 140
SSD Size (MB) SSD Size (MB)

Execution time Hit ratio 46

Evaluation

*S. Shah and B. D. Noble. A study of e-mail patterns. In Software Practice and Experience, volume 37(14), 2007.

® Benchmark: Emaif

» Intensive synchronous writes with different append sizes and locations
based on realistic mail distribution function

» a more skewed distribution of latencies
» Most data accesses are small random writes

20 e, T T T T T 100
18} :
16 F _Jr:\ -
214 | 7 _ the write-back area
— AN o .
=12t . & 60 r| behaves like a small
10}y RN 1 2 cache to capture some
S oL T | T 40 |\ short-term data reuse I
Z 6} %
4L HDD —— 1 20 -
0% WB -+~ K, 0% WB —+—
2 }20% WB - — 20% WB -3¢~
0 300/0 VyB)K I I . ;I O . l l 300/0 \./VB I %
20 40 60 80 100 120 140 20 40 60 80 100 120 140
SSD Size (MB) SSD Size (MB)

Execution time Hit ratio 47

Evaluation

* Transaction Processing Performance Council. TPC Benchmark (2008) http://www.tpc.org/tpch/

S —

[————

® Benchmark: TPC-H Q1 (query 1 from the TPC-H

database benchmark suite)*

» more sequential data accesses and less |/O intensive

than the other workloads

1.4

12 P

1 i "‘~~-~____ __________
0.8

0.6

Normalized Time

04 r

HDD ——
0o b 0% WB -
20% WB -3
30% WB %

0
SSD Size (MB)

Execution time

400 800 1200 1600 2000 2400 2800

Hit Ratio (%)

100

80

60

40

20

30% WB ¥

400

800 1200 1600 2000 2400 2800
SSD Size (MB)

Hit ratio

48

Evaluation

* Transaction Processing Performance Council. TPC Benchmark (2008) http://www.tpc.org/tpch/

® Benchmark: TPC-H Q1 (query 1 from the TPC-H
database benchmark suite)*
» more sequential data accesses and less |/O intensive
than the other workloads
1.4 100
1.2 F 80
: 'l '
£ o) 2
= o8| Only 16% slower | < 60
I 5
g o6 = 40
E 2
< 04f -
HDD —— 20
02 b 0% WB -t i
20% WB -3¢~
0 30% V.VB ?K I 0 .
400 800 1200 1600 2000 2400 2800 400 800 1200 1600 2000 2400 2800
SSD Size (MB) SSD Size (MB)

Execution time Hit ratio 49

Evaluation

* Transaction Processing Performance Council. TPC Benchmark (2008) http://www.tpc.org/tpch/

® Benchmark: TPC-H Q1 (query 1 from the TPC-H
database benchmark suite)*

» more sequential data accesses and less |/O intensive
than the other workloads

1.4 : — When the SSD size is small, the write-back
o area may introduce extra traffic et
1.2 B = .
o 1} _ X
ig $ 60 /
'S5 0.8 | 2-5% slowdown compared |4 Y
I to running on HDD é "
S > it rati
£ 06 = 4o< {About 30~40% hit ratio
o Y
< 04} -
HDD —— 20 k
02 } 0% WB -t - 0% WB —+—
20% WB ----- PG 20% WB ----3---
o 30% WIB --------- I% ---------- L 1 1 0 1 L 1 300/0 IWB ----- L x
400 800 1200 1600 2000 2400 2800 400 800 1200 1600 2000 2400 2800
SSD Size (MB) SSD Size (MB)

Execution time Hit ratio 50

Evaluation

® Hystor identifies metadata blocks of file systems
and remaps them to the SSD

» How does such an optimization improve performance?

® Comparison the performance of Hystor with and
without optimization for file system metadata
blocks
» With optimization: Hystor-Metadata
» Without optimization: Hystor-No-Metadata

51

Evaluation

® Intel® Open Storage Toolkit

» generating two workloads, which randomly read 4KB data
each time until T6MB and 32MB of data are read

140 r=—— ' ' ' ' ' ' - Both approaches eventually can
N speed up the two workloads by
120 VI R mmmmmmmmmem M = about 20 seconds
(2}
e
g 100 4 + Hystor-Metadata can achieve high
23 performance with a much smaller
i“g’ sof | SSD space
-% 60 L g Z ,,,,,,,, . S | + For the workload reading 32MB
3 data, Hystor-Metadata identifies
n 40 Hyslt_lor-No-Metagata gszmg; — and remaps nearly all indirect
B ystor-Metadata (32 S T Sl
Hystor-No-Metadata (16MB) - blocks to the SSD with just 32MB
20 | | Hystor-Metadata (16MB) --a- of SSD space

0 20 40 60 80 100 120 140 160

SSD Size (MB) 52

Evaluation

® [his result shows

» optimization for metadata blocks can effectively improve
system performance with only a small amount of SSD
space

—especially for metadata-intensive workloads

» high-cost cold misses can be avoided

— due to proactively identifying these semantically critical
blocks (file system metadata blocks) at an early stage

53

Evaluation

® Scrubbing - Dirty blocks buffered in the write-back area
have to be written back to the HDD in the background

® Each scrub operation can cause two additional |/O
operations
» A read from the SSD
» A write to the HDD

® How does scrubbing affect performance?

» Here, email is used for the evaluation
— Because of the worst case for scrubs

54

Evaluation

Requests/Second

® X-axis: Various configurations of the SSD size (% of the
working-set size) and HDD-only system
® Y-axis: Request arrival rate in email
» Demand: requests by upper-layer components
» Scrubs: requests by internal scrubbing daemon

6,000] Demand

B Scrubs

5,000 [

4,000

3,000 |~

2,000 [

1,000 |~

20 40 60 80 20 40 60 80 HDD

SSD in Hystor HDD in Hystor

Evaluation

[————

® X-axis: Various configurations of the SSD size (% of the
working-set size) and HDD-only system

® Y-axis: Request arrival rate in email
» Demand: requests by upper-layer components
» Scrubs: requests by internal scrubbing daemon

6,000 O Deriand
Il Scrubs

5,000 |- ﬁ-ligh rate reasons

= som L m « a large request in Hystor
s may split into several

2 3.000 small ones to different

= devices

% 2,000 - « two additional I/0O

operations are needed

1,000
for each scrub

i I

20 40 60 80 20 40 60 80 /HDD
&SD in Hystor HDD in Hysy

Evaluation

[———— ———

® X-axis: Various configurations of the SSD size (% of the
working-set size) and HDD-only system

® Y-axis: Request arrival rate in email

» Demand: requests by upper-layer components

» Scrubs: requests by internal scrubbing daemon

_ « Increasing to 80% of the
6,000

= Derfind N working-set size, the arrivh

5,000 rate of scrub requests
drops by nearly 25% on the

4,000 |- SSD due to less frequent
scrubbing

3,000

« The arrival rate of demand

2,000 = requests increases

« Reduction of execution
time

« The # of demand

20 40 60 80 20 40 60 80 HDD requests remains
kSSD in Hystor / HDD in Hystor UnChanged 57

Requests/Second

1,000 [~

Evaluation

—

Requests/Second

® X-axis: Various configurations of the SSD size (% of the
working-set size) and HDD-only system

® Y-axis: Request arrival rate in email

6,000

5,000

4,000

3,000

2,000

1,000

» Demand: requests by upper-layer components
» Scrubs: requests by internal scrubbing daemon

[0 Demand
Il Scrubs

20 40 60 80

SSD in Hystor

20 40 60 80

\HDD in Hystor)

-

These requests happen |
the background
« The performance
Impact on the
foreground jobs is
minimal

~

n

/

HDD

58

Evaluation

[————

® [his result shows

» Although a considerable increase of request arrival rate
Is resident on both storage devices, conducting
background scrubbing causes minimal performance
Impact, even for write-intensive workloads.

59

Evaluation

® Chunk size

» Large: desirable for reducing memory overhead of the
mapping table and the block table

» Small: effectively improving utilization of the SSD space
—a large chunk may contain both hot and cold data

® S0, how does chunk size affect performance?

60

Normalized Time

Evaluation

® Chunk size: 4KB(8 sector), 16KB(32 sector)

® \Write-back fraction: 20%

25

20

15

10

1 I
tpch-g1 4K ----%----
postmark 4K ----%----
email 4K ----B---
tpch-g1 16K —><—
postmark 16K —x—
email 16K —=—

5.
IN
1

NE
7<
1

20 40

60 80 100

SSD Size (% of Working-Set Size)

With a large chunk size (16KB), the
performance of email degrades
significantly
« most of the requests in email
are small
* hot and cold data could co-
exist in a large chunk — miss
rate increases

61

Evaluation

® [his result shows

» For a small-capacity SSD

—a small chunk size should be used to avoid wasting
precious SSD space

» For a large-capacity SSD

—It's possible to use a large chunk size and afford the
luxury of increased internal fragmentation in order to
reduce overhead

® In general

»a small chunk size (e.g. 4KB) is normally
sufficient for optimizing performance

— So is Hystor (default 4KB)

62

Agenda

® [ntroduction

® SSD Performance Advantages

® High-Cost Data Blocks

® Maintaining Data Access History

® [he Design and Implementation of Hystor
® Evaluation

® Conclusion and Impression =&

63

Conclusion

® Need to find the fittest position of SSDs in the existing
systems to strike a right balance between performance and

cost
® This work shows

» It's possible to identify the data that are best suitable to be held
in SSD by using a simple yet effective metric

» High-cost data blocks can be efficiently maintained in the block
table at a low cost

» SSDs should play a major role in the storage hierarchy by
adaptively and timely retaining performance- and semantically-
critical data

> It's also effective to use SSD as a write-back buffer for
Incoming write requests

» Hystor can effectively leverage the performance merits of SSDs
with minimized system changes

64

Impression

® Pros

» Exploratory evaluations were executed in detall
— E.g. SSD performance, Indicator Metric...

» A lot of detailed evaluation results about Hystor

» Simple yet smart approach to improve system
performance

® Cons

» Few figures (Sectionb, Sectiono)

> | would like to know how different a hardware
Implementation is

65

