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Abstract—Data intensive computing can be defined as 
computation involving large datasets and complicated I/O 
patterns. Data intensive computing is challenging because there is 
a five-orders-of-magnitude latency gap between main memory 
DRAM and spinning hard disks; the result is that an inordinate 
amount of time in data intensive computing is spent accessing 
data on disk. To address this problem we designed and built a 
prototype data intensive supercomputer named DASH that 
exploits flash-based Solid State Drive (SSD) technology and also 
virtually aggregated DRAM to fill the “latency gap”. DASH uses 
commodity parts including Intel® X25-E flash drives and 
distributed shared memory (DSM) software from ScaleMP®. The 
system is highly competitive with several commercial offerings by 
several metrics including achieved IOPS (input output operations 
per second), IOPS per dollar of system acquisition cost, IOPS per 
watt during operation, and IOPS per gigabyte (GB) of available 
storage. We present here an overview of the design of DASH, an 
analysis of its cost efficiency, then a detailed recipe for how we 
designed and tuned it for high data-performance, lastly show that 
running data-intensive scientific applications from graph theory, 
biology, and astronomy, we achieved as much as two orders-of-
magnitude speedup compared to the same applications run on 
traditional architectures. 

I. INTRODUCTION 

Certain domains of science, such as genomics [1] and 
astronomy [2], are literally "drowning in a sea of data" in that 
disks are filling up with raw data from sequencing machines 
and space telescopes faster than that data can be 
analyzed. Some data analysis problems can be solved by 
parallel processing with many compute nodes thus spreading 
out the data across many physically distributed memories. 
Others, limited by low parallelism or challenging access 
patterns depend on fast I/O or large fast shared memory for 
good performance. 

By talking to users, examining their applications, and 
participating in community application studies [3] [4] [5] [6], 
we  identified data intensive HPC applications spanning a 
broad range of science and engineering disciplines that could 
benefit from fast I/O and large shared memory packed onto a 
modest number of nodes; included are applications in the 
growing areas of 1) data mining and 2) predictive science used 
to analyze large model output data. 

In a typical data mining application, one may start with a large 
amount of raw data on disk [7]. In the initial phase of analysis, 
these raw data are read into memory and indexed; the resulting 
database is then written back to disk. In subsequent steps, the 
indexed data are further analyzed based upon queries, and the 
database will also need to be reorganized and re-indexed from 
time to time. As a general rule, data miners are less concerned 
about raw performance and place higher value on productivity, 
as measured by ease of programming and time to solution [8]. 
Moreover, some data mining applications have complex data 
structures that make parallelization difficult [9]. Taken 
together, this means that a large shared memory and shared 
memory programming will be more attractive and productive 
than a message passing approach for the emerging community 
of data miners. I/O speed is also important for accessing data 
sets so large that they do not fit entirely into DRAM memory. 

A typical predictive science application may start from 
(perhaps modest) amounts of input data representing initial 
conditions but then generate large intermediate results that 
may be further analyzed in memory, or the intermediate data 
may simply be written to disk for later data intensive post-
processing. The former approach benefits from large memory; 
the latter needs fast I/O to disk. Predictive scientists also face 
challenges in scaling their applications due to the increasing 
parallelism required for peta-scale and beyond [9]; they 
benefit from large memory per processor as this mitigates the 
scaling difficulties, allowing them to solve their problems with 
fewer processors. 

As we forecast the characteristics of data intensive 
applications in the future, we find that today’s supercomputers 
are, for the most part, not particularly well-balanced for their 
needs. Creating a balanced data intensive system requires 
acknowledging and addressing an architectural shortcoming of 
today’s HPC systems. 

The deficiency is depicted graphically in Figure 1; while each 
level of memory hierarchy in today’s typical HPC systems 
increases in capacity by 3 orders of magnitude, the costs of 
each capacity increase are latencies that increase and 
bandwidths that decrease by at least an order of magnitude at 
each level. In fact, today’s systems have a latency gap after 
main memory. The time to access disks is about 10,000,000 
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processor cycles—five orders of magnitude greater than the 
access time to local DRAM memory. It is almost as though 
today’s machines are missing a couple of levels of memory 
hierarchy that should read and write slower than local DRAM 
but orders of magnitude faster than disk. Since some data sets 
are becoming so large they may exceed the combined DRAM 
of even large parallel supercomputers, a data intensive 
computer should, if possible, have additional levels of 
hierarchy sitting between DRAM and spinning disk. To fill 
these missing levels, a data intensive architecture has at least 
two choices: 1) aggregate remote memory and 2) faster disks. 
We designed a system named DASH to make use of both. 
With these two additional levels (depicted in the Figure 1 as 
Remote Memory and Flash Drives), we managed to fill the 
latency gap and to present a more graceful hierarchy to data 
intensive applications.  
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Figure 1. The memory hierarchy. Each level shows the typical access latency 
in processor cycles. Note the five-orders-of-magnitude gap between main 
memory and spinning disks. 

 

In section 2 we describe the high-level design of DASH and 
compare its efficiency to other designs in the same space. In 
section 3 we supply the detailed “recipe” we used to design 
and tune the high performing flash-based I/O nodes of DASH- 
the intent is that the description is detailed enough so that 
anyone can understand our design choices and duplicate them. 
Section 4 describes the performance of some scientific 
applications - our experiments showed that DASH can achieve 
up to two-orders-of-magnitude speedup over traditional 
systems on these data intensive applications. Section 5 
discusses flash generally and lessons-learned. Section 6 is 
related work.  

II. SYSTEM OVERVIEW 

DASH is comprised of 4 “supernodes” connected by DDR 
Infiniband. Each supernode is physically a cluster composed 
of 16 compute nodes and 1 I/O node, virtualized as a single 
shared memory machine (see Figure 2) by the vSMP system 
software from ScaleMP® Inc. [10]. Each compute node 
comprised of 2 Intel® quad-core 2.4GHz Xeon Nehalem 

E5530 processors with 48GB of local DDR3 DRAM memory. 
As a result, each supernode has 128 cores, 1.2TFlops of peak 
capability, and 768GB of global (local + remote) shared 
memory. The I/O node is loaded with 16 Intel® X25-E 64GB 
flash drives, which amount to 1TB in total capacity. DASH 
has 4 such supernodes in all, 64 compute nodes with 4.8 
TFlops, 3 TB of DRAM and 4 TB of flash. DASH is a 
prototype of the larger National Science Foundation (NSF) 
machine code-named Gordon slated for delivery in 2011, 
which will have more (32) and larger (32-way) supernodes 
and will feature 245TFlops of total compute power, 64TB of 
memory, and 256TB of flash drives. 
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Figure 2. Physical and virtual structure of DASH supernodes. DASH has in 
total 4 supernodes IB interconnected of the type shown in the figure. 

 

A. Storage hierarchy 

Flash drives provide the first level (closest to the spinning 
disk) to fill the latency gap. NAND Flash is a lively research 
and industry topic recently [11] [12] [13] [14] [15]. Unlike 
traditional electromechanical hard disks, flash drives are based 
on solid-state electronics and have quite a few advantages over 
hard disks, such as high mechanical reliability, low power 
consumption, high bandwidth, and low latency. Their latency 
is about 2 orders of magnitude lower than that of spinning 
disks. With these faster drives, we can bring user data much 
closer to the CPU. Flash drives can be classified as MLC 
(Multi-Level Cell) and SLC (Single-Level Cell) drives. We 
chose SLC for longer lifetime, lower bit error rate, and lower 
latency. In our prototype system DASH, we have 1 TB of flash 
drives per supernode (4 TB in all). We will get more (8 TB per 
supernode) in Gordon (256 TB in all). 



 

Though flash drives are much faster than spinning disks, there 
is still a big latency gap between DRAM memory and flash 
drives (see Figure 1). DASH is equipped on each compute 
node with 48GB of local DDR3 DRAM memory, that is, 6GB 
per core. In contrast, most existing supercomputers have only 
1 to 2GB per core. So DASH already has a better ratio of 
DRAM to compute power – suitable for data intensive 
computing. Furthermore, as the second layer of latency-gap 
filler, we exploit vSMP software to aggregate distributed 
memory into a single address space. That means every single 
core in the supernode can access all 768GB of (local + remote) 
memory possessed by (all 16 compute nodes of) one 
supernode.  With such a large shared memory, users can deal 
with applications with large memory footprint but limited 
parallelism, or just use all that memory as a RAM disk for fast 
I/O. Users with less than ¾ of a TB of data can move their 
data from spinning disks up to the shared memory in the 
memory hierarchy, a full 3 orders of magnitude closer to the 
CPU in terms of latency. Users with less than 1 TB of data can 
still avoid spinning disk and operate 2 orders of magnitude 
faster by loading their data on the flash of one supernode. And 
if a user uses the whole machine he can gain access of up to 7 
TB of DRAM + Flash (3TB + 4TB) for truly large data 
analysis problems. 

B. Cost efficiency  

DASH is designed to provide cost-effective data-performance. 
We have focused the architecture on providing cost-efficient 
IOPS which should benefit all data-intensive applications.  It 
is interesting to compare the three lowest levels of data 
hierarchy on DASH (the HDD, SSD, and virtually aggregated 
DRAM layer) to each other and some commercial offerings. 
Table 1 shows a cost efficiency comparison between DASH 
data hierarchy levels and two popular commercial products 
offered by 1) Fusion-I/O (ioDrive [16]) and 2) Sun 
Microsystems/Oracle (F5100 configuration-1 [17]). 

 
TABLE 1. COST EFFICIENCY COMPARISON BETWEEN DASH AND COMMERCIAL 
PRODUCTS. 

 
Generic 
HDD 
(SATA) 

DASH- 
I/O 
node 

DASH 
Super 
node 

Fusion 
–IO 

Sun – 
F5100 

GB 2048 1024 768 160 480 

MB/s/$ ~0.4 0.16 0.49 0.12 0.07 

$/GB ~0.15 19.43 112.63 41.06 90.62 

IOPS/$ 0.4-1.0 28 52 18 9 

IOPS/GB 0.05-0.1 549 5853 725 828 

 

The cost metrics in Table 1 are collated and averaged from 
different sources including the technical specifications of each 
product available from its vendor and reseller [16] [17] [18] 
[19] [20] [21] [22]. The listed prices of these products were 

observed on the first week of February, 2010. The second 
column (Generic HDD) was chosen to represent that category 
within a range of values (price, density, and speed varies by 
vendor product). The cost of DASH I/O node includes the 
flash drives, the controllers, and the Nehalem processor; the 
cost of DASH supernode includes the cost of 16 dual socket 
Nehalem nodes, their associated memory, and the IB 
interconnect but not the I/O node (its performance was 
measured with RAM drive). The comparison to commercial 
products then gives an unfair cost disadvantage to DASH as 
the vendor’s offerings are just storage subsystems and lack 
any substantial compute power—nevertheless, it is useful as a 
relative comparison. The third row (MB/s/$) can be seen as 
saying that bandwidth per dollar is more favorable for 
spinning disks and DRAM than for flash and DASH scores the 
best by this metric at all levels. The forth row ($/GB) says 
(common sense) that capacity per dollar is (in the order high to 
low) HDD (spinning disk), SSD (flash), DRAM and that 
DASH has the cheapest flash for the systems compared (the 
vendor system’s don’t have any general-use DRAM just some 
DRAM cache). The fifth row (IOPS/$) can be seen as saying 
that IOPS per dollar is more favorable for DRAM and flash 
than for spinning disk and DASH scores the best by this 
metric again. As shown on row two (GB) DASH also has 
more than twice as much flash capacity than either of the 
vendors. Row six (IOPS/GB) shows that because of having 
this more capacity the metric IOPS/GB looks better for the 
vendors at the flash but that is in part because they have less 
than ½ the flash (DASH still has the highest value in the row 
six category not due to flash but due to its virtual DRAM 
supernode layer).  DASH then is a very high performing and 
cost-effective system compared to commercial offerings in the 
same space and since this paper describes how to build and 
tune it from commodity parts, people in the market for such a 
data-intensive system could consider simply building their 
own DASH by this recipe. 

C. Power efficiency 

Power and cooling costs form a major part of large data 
center’s operating cost. Power and cooling costs can even 
exceed the server hardware acquisition costs over the lifetime 
of a system. The power consumption of flash SSDs is low, 
making them the right choice for DASH.  Table 2 compares 
power metrics between flash SSD, HDD, and DRAM. 

 
TABLE 2. COMPARISON OF POWER METRICS BETWEEN SSD AND HDD. 

 DRAM 7x2 GB 
Dimms (14 GB) 

Flash SSD 
64GB 

HDD  
2TB 

Active Power 70 W 2.4 W 11 W 

Idle Power 35 W 0.1 W 7 W 

IOPS per Watt 307 712 35 

 

The numbers in Table 2 were averaged from technical 



 

specifications of various products and independent hardware 
evaluation tests [18] [23] [24]. The second and the third rows 
are self-explanatory. The forth row compares the IOPS that 
can be performed per watt.  Since drives are partly active and 
partly inactive during the course of an application’s execution 
we can say that in general the time savings resulting from 
flash come with an additional power savings over spinning 
disk, IOPS/Watt may be as much as two-orders-of magnitude 
better than spinning disk. The substantially higher IOPS of 
DRAM (an order of magnitude higher than flash) comes at a 
higher power cost. So if one wishes to optimize IOPS per Watt 
(or IOPS for operating cost) then a system like DASH may be 
considered. 

Overall, it can be seen that our experimental system DASH is 
a powerful, high capacity and fast system design even by 
commercial standards, and offers cost-efficient, power-
efficient IOPS for data intensive computing. 

III. I/O SYSTEM DESIGN AND TUNING 

The DASH supernode (shared memory) results simply from 
deploying vSMP software on what is otherwise a standard IB 
connected system.  Here we mainly focus on the design and 
tuning process for the I/O node describing how we chose the 
controller and tuned the RAID system. 

To evaluate the performance of storage systems, bandwidth 
and IOPS are both important metrics. Bandwidth measures 
sequential performance while IOPS shows the throughput of 
random accesses. This section presents the whole tuning 
process of the DASH storage system. Since our target 
applications are characterized as intensive random accesses, 
we biased towards achieving high IOPS more than bandwidth 
in the design. To pursue and measure the peak I/O 
performance of the system, we adopted RAID 0 for this paper.  

IOR [25] and XDD [26] are two of the most accurate, reliable, 
and well-known I/O benchmarks in our experience. We used 
both to verify each other and their results were always similar 
in our tests. For each software and hardware configuration, we 
ran four tests: sequential write, sequential read, random write 
and random read respectively. 

Figure 3 summarizes a series performance results obtained 
relative to our starting baseline obtained by default settings, 
about 46K IOPS with 4KB blocks. After basic tunings, we 
obtained 88K IOPS (1.9x of the baseline) random read rate 
with 4KB blocks out of one I/O node; this is only about 15% 
of the theoretical upper bound of 560K IOPS (16x35K= 560K 
IOPS since the manufacturer spec is 35K IOPS random read 
per Intel® X25-E SSD and each I/O node has 16 drives). We 
figured out that a bottleneck came from the low-frequency 
processor embedded in our first RAID controllers 
(RS2BL080) and switched to simpler HBAs (9211-4i) and 
software RAID (using the fast Nehalem processor on each I/O 
node as the I/O controller rather than the embedded 
processor). This helped the system to scale linearly up to 8 
drives, with obtained performance of about 255K IOPS (5.6x 
of the baseline). To keep the linear scaling up to 16 drives 

though we had to remove even the software RAID and handle 
the separated drives directly, which gave us (a little more than) 
theoretical upper-bound performance of 562K IOPS (12.4x of 
the baseline). With help of the vSMP distributed shared 
memory system, we were able to exploit the shared memory of 
DASH as a single RAM drive and boost the performance 
again up to 4.5 million random read IOPS, (98.8x of the 
baseline using DRAM in place of flash). Details of how these 
results were obtained are described in the following sections. 

Since a single hard disk (HDD) can only do about 200 IOPS 
per disk (random read 4KB blocks) depending on 
manufacturer, it can be seen that DASH can provide two 
orders of magnitude higher IOPS from its flash-equipped I/O 
nodes and yet another two orders of magnitude from 
aggregated DRAM as RAM disk. These options effectively fill 
the latency gap. 

 
Figure 3. Random read performance improvements with important tunings. 

 

A. Single drive tuning 

Before tuning the whole I/O system, we started with tuning a 
single flash drive first. Table 3 shows some important tuning 
parameters for flash drives. We also need to tune the software 
components, such as I/O benchmarks and the operating 
system, for single-drive tests, which will be discussed later.  

 
TABLE 3. IMPORTANT TUNING PARAMETERS FOR FLASH DRIVES. 

Parameters Descriptions DASH 
setting 

Write 
Caching 

Write through or write back in the 
drive ram-cache 

Write 
back 

Read Ahead Read the data into the drive ram-
cache before they are requested 
according to the access pattern. 

On 

AHCI Advanced Host Controller Interface, 
API for SATA host bus adapters. 

On 

1 1.9 5.6 12.4 
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Important tunings 



 

Write caching and read ahead on other system levels might not 
be helpful for an intensive random workload. However, the 
situation is a little bit different on the flash drive level. Since 
the internal structure of a flash drive is highly parallel and 
logically continuous, pages are usually striped over the flash 
memory array, prefetching multiple pages and background 
write-back can be very efficient, while disabling these options, 
especially write caching, could cause a dramatic performance 
drop [11]. 

 
TABLE 4. I/O TEST RESULTS OF A SINGLE FLASH DRIVE. 

 
Sequential 
Write 
(MB/s) 

Sequential 
Read 
(MB/s) 

Random 
Write 
(4KB 
IOPS) 

Random 
Read 
(4KB 
IOPS) 

Measured 203 261 10724 39756 

Spec 170 250 3300 35000 

 

Advanced Host Controller Interface (AHCI) is Intel®'s API 
specification for SATA host-controllers. One of its advantages 
is to enable Native Command Queuing (NCQ). In a traditional 
spinning disk, NCQ is designed to hold (and also schedule) the 
I/O requests not served by the disk fast enough. In flash 
drives, the purpose is the opposite. It is used to stock I/O 
requests in case the CPU is busy and cannot summit new 
requests in time [27]. For backward compatibility, AHCI is 
disabled by default in our system. After enabling the option, 
we obtained more than 10x improvements on random read 

IOPS. Table 4 shows the I/O test results with a single flash 
drive. These performance numbers actually exceed the 
published specs of the Intel® X25-E which are also listed in 
the table. 

B. Basic RAID tuning 

The tuning parameter space of the DASH storage system is 
large. To achieve maximum performance, we have to 
coordinate all the software and hardware components of the 
system: I/O benchmarks, the operating system, and hardware 
RAID. Table 5 summarizes the important tuning parameters of 
these components. 

Usually the operating system will try to cache the data from/to 
disks for future uses. Our RAID controller also has its own 
RAM cache for similar purposes. Unfortunately, cache doesn't 
always help. For example it may not help large-scale random 
I/Os (or even very large sequential I/Os) with low temporal 
locality. Even worse, it will introduce extra overhead on the 
data path. We enabled direct I/O to bypass the OS buffer 
cache and turned off the RAID cache. 

There are quite a few APIs (libraries) one can use for I/O 
accesses. IOR supports four: POSIX, MPIIO, HDF5 and 
netCDF while XDD only supports POSIX. Since POSIX is the 
most common and typical in application code, we chose it for 
our tests. MPIIO is also widely used in HPC community. 
Unfortunately, it doesn't support direct I/O. 

Chunk size is decided according to the test type and the stripe 
size. For sequential tests, we are trying to measure the 
maximum bandwidth across all the underlying flash drives and 
the chunk size should be larger than the stripe size times the  

 

TABLE 5. IMPORTANT TUNING PARAMETERS FOR THE DASH I/O SYSTEM. 

Components Parameters Descriptions Final DASH setting 

I/O 
Benchmarks 

Cache Policy Cached or direct I/O, use the OS buffer cache or not. Direct I/O 

API I/O APIs to access drives such as POSIX, MPIIO, HDF5 and 
netCDF. 

POSIX 

Chunk Size The data size of each request. I/O benchmarks usually generate 
fixed-sized requests. 

4MB for sequential tests, 
4KB for random tests 

Queue Depth The number of outstanding I/O requests. 1 for sequential tests and 
128 for random tests 

Operating 
System  

I/O Scheduler Schedule and optimize I/O accesses. There are 4 algorithms in the 
2.6 Linux kernel: CFQ (default), Deadline, Anticipatory, and No-op. 

No-op 

Read Ahead Read the data into cache before they are requested according to the 
previous access pattern. 

Off 

Hardware 
RAID 

Cache Policy Cached or direct I/O, use the RAID controller cache or not. Direct I/O 

Write Policy Write through or write back. Write through 

Read Ahead RAID-level read ahead. Off 

Stripe Size The block size in which RAID spread data out to drives. 64KB 



 

number of flash drives (16 in our case). We chose 4MB, which 
is big enough for our stripe sizes. For random tests, we are 
trying to evaluate how well the system deals with small 
chunks of random access. Since the access unit (page size) of 
our flash drives is 4KB, we believe that is a reasonable 
(minimal) setting. 

Queue depth also depends on the test type and the number of 
underlying flash drives. For sequential tests, since each 
request already covers all the underlying flash drives, we 
chose a setting of 1 to guarantee a strict sequential access 
pattern. As for random tests, to maximize the throughput, we 
chose 128, which is large enough comparing with the number 
of flash drives (16 in our case), and hopefully can make a full 
use of each flash drive. 

There are 3 goals for I/O scheduler: merging adjacent requests 
together, re-ordering the requests to minimize seek cost 
(elevator scheduling), and controlling the priorities of 
requests. Since there is no drive head movement in flash 
drives, elevator scheduling is not necessary. Also, we are not 
running any time critical applications and don’t need 
prioritization either. In our experiments, the simplest No-op 
scheduler, which only proceeds request merging, always gave 
us the best result. 

We can set read ahead on 3 levels: operating system, RAID 
controller, and flash drive. We discussed above the settings 
per SSD on the drive level, but things are different on the 
other two levels. Read ahead is good for sequential 
performance, but it doesn’t help random accesses. Sometimes 
it may even waste bandwidth with extra reads and hurt random 
performance. Since direct I/O was adopted and read ahead 
became irrelevant, we just turned it off. 

Again, we already discussed write-back and write-through on 
the drive level, but it is different on the RAID level. The 
common wisdom is that write-back is always better. However, 
it is only true for light workloads. In our case, with intensive 
random accesses, the write-back cache is not helpful. Also, the 
extra copy on the data path will hurt the performance. As a 
result, we adopted write-through on the RAID level.  

To decide the stripe size is a difficult optimization. Usually, 
small stripe size will hurt sequential bandwidth because the 
start-up overhead dominates. For flash drives, it is even worse 
by causing serious fragmentation, which was proved to cause 
dramatic performance downgrading [11]. However, larger is 
not always better. After some threshold, large stripe size will 
limit the parallelism of I/O accesses and then the RAID 
system cannot exploit the bandwidth of all the underlying 
flash drives. We tried different sizes from 8 KB to 1024 KB 
and found that 64 KB and 128 KB are the best configurations 
for our system and workload. 

With the settings in Table 5, we obtained the performance 
numbers for the stripe sizes of 64KB and 128KB shown in 
Table 6. As we measured in Table 4, the random read 
performance of a single flash drive is 39,756 4KB IOPS. That 
means the upper bound for the whole IO node should be more 

than 600K IOPS, which is much higher than we obtained at 
this stage. In the next sub-section, we will continue our 
adventure to figure out the problem. 

 
TABLE 6.  I/O TEST RESULTS WITH 2 DIFFERENT STRIPE SIZES. 

Stripe 
Size 
(KB) 

Sequential 
Write 
(MB/s) 

Sequential 
Read 
(MB/s) 

Random 
Write 
(4KB 
IOPS) 

Random 
Read 
(4KB 
IOPS) 

64 1179 2199 3749 87563 

128 1275 2056 3121 79639 

 

C. Advanced tuning 

As shown above, we achieved only about 15% of the 
maximum performance after all those tunings. What’s the 
problem? After some investigations, we suspected that the 
bottleneck might be the RAID controller. To implement the 
RAID function and other advanced features, also to reduce the 
CPU loads, the controller is embedded with a low-frequency 
processor (800MHz in our case). This small processor is 
enough for spinning disk, but not fast enough to work with 
flash drives. Are there any faster RAID controllers? To our 
best knowledge, it is the state-of-the-art RAID controller 
(Intel® RS2BL080) we can get that is compatible with our 
drives. Another option is to use simple Host Bus Adapters 
(HBA) without embedded processors and share the power 
from the host CPU. Our motherboard happens to have an on-
board HBA similar to our RAID controllers but without 
embedded processor or hardware RAID function. We 
connected only 6 flash drives to compose a software RAID 
and achieved 153,578 4KB IOPS, almost 2x of the hardware 
RAID performance. This confirmed our speculation. 

The on-board HBA has a corresponding external version, 
which is rated higher than 150K 4KB IOPS by the vendor. 
Each HBA can connect 4 flash drives. Our motherboard can 
hold 4 HBAs. By this means, with the same number (16) of 
flash drives, we can expect the random read performance of 
about 600K 4KB IOPS, which is very close to the upper 
bound. 

With similar settings as the previous sub-section except 
replacing the hardware RAID with the HBAs plus the Linux 
software RAID, we repeated the tests. The random read 
performance scaled almost linear as we expected at the 
beginning. With 8 drives, we obtained about 250K IOPS, 
almost 3x as before. However, the scaling stopped after that. 
In Figure 4, we can see that there is a plateau from 8 to 16. Is 
it the RAID problem again? To answer the question, we 
removed the software RAID and performed our tests directly 
on separate drives. This time we obtained almost linear scaling 
from 1 up to 16 drives. The highest performance was 562,364 
IOPS. We also removed the file system (XFS) and tested 
directly on the raw block devices. The results were almost the 



 

same. It seems we reached the upper bound. 

 

 
Figure 4. Random read performance with and without RAID. The 
configuration with RAID only scales up to 8 drives while the one without 
RAID can scale linearly up to 16 drives. We also ran tests with raw block 
devices. 

 

In Table 7, we list all the I/O test results on 16 drives with and 
without RAID. You can see that the configuration without 
RAID is not only good for the random read test, but all the 
other tests. However, the performance with software RAID in 
fact is not too bad. By comparing with the results in Table 6, 
you will find that it still beats the original hardware RAID on 
almost all the tests. For the random tests, it achieved up to 5x 
the original performance. Though we are still investigating the 
RAID problem [28], it is safe to conclude that the software 
RAID configuration delivers a good balance between high 
performance and convenience. For the users who still need 
higher performance and don’t care about the hassle to deal 
with 16 separate drives, the configuration without RAID is 
still an option and in fact there are some programming 
libraries around like STXXL [29] that can help to ease the job 
of managing the separate SSDs. 

 
TABLE 7. I/O TEST RESULTS WITH AND WITHOUT RAID. 

 
Sequential 
Write 
(MB/s) 

Sequential 
Read 
(MB/s) 

Random 
Write 
(4KB 
IOPS) 

Random 
Read 
(4KB 
IOPS) 

With 
RAID 1395 2119 19784 254808 

Without 
RAID 2958 3225 143649 562365 

 

D. RAM drive 

With the flash drives, we obtained optimal results at the limit 

of the existing hardware technologies. However, with the 
special design of DASH, it is still possible for us to achieve 
even higher performance. As mentioned above, DASH adopts 
vSMP distributed shared memory software system to 
aggregate separate physical memories into a single virtual 
memory. Besides the part of the memory used by the vSMP 
software and reserved for cache, a user has access to about 
650GB visible memories from any processor in each 
supernode. Such a big memory space can be used as a RAM 
drive by mounting with the RAMFS file system. Since DRAM 
accessed over IB is even faster than flash drives (by up to 3 
orders of magnitude!), RAM drives are expected to achieve 
much higher performance and the results in Table 8 show this. 

 
TABLE 8. I/O TEST RESULTS OF THE RAM DRIVE. 

Sequential 
Write  
(MB/s) 

Sequential 
Read  
(MB/s) 

Random 
Write  
(4KB IOPS) 

Random 
Read  
(4KB IOPS) 

11,264 42,139 2,719,635 4,495,592 

 

IV. PERFORMANCE OF REAL-WORLD DATA-INTENSIVE 

APPLICATIONS 

The behavior of I/O benchmarks as described above may be 
interesting and useful for comparison by simple metrics but 
the question remains “what is the implication for real 
applications”? 

To partially answer this question we chose one application 
core from predictive science and two full applications from 
data mining.  We present the performance results of 1) external 
memory BFS, a common component in several predictive 
science graph-based applications 2) Palomar Transient Factory 
a database application used to discover time-variable 
phenomena in astronomy data. 3)  Biological pathway analysis 
in an integrated data-mining of heterogeneous biological data 
framework. All three applications generate intensive random 
data accesses.  

A. External memory BFS 

Data in several domains such as chemistry, biology, 
neuroscience, linguistics, and social science, are implicitly 
graph structured or graphs may be induced upon them. For 
example, semantic tagged information is encoded as a graph 
where nodes represent concepts and labeled edges are 
relationships. Search engines model the World Wide Web as a 
graph, with web-pages as nodes and hyperlinks as edges. 
Researchers in linguistics use graphs to represent semantics 
expressed in sentences. Networks of roads, pipelines, neurons 
etc. can all be viewed as graphs. Moreover, due to 
technological advancements, scientists are increasingly 
harvesting massive graphs in their respective fields. For 
example, human interaction networks as large as 400 million 
edges in size are already extant [30]. Information repository 
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such as NIH’s Neuroscience Information Framework (NIF) 
[31] is projected to have more than a billion edges. Web-
graphs which are studied by social scientist, mathematicians, 
and linguistics can be on the order of tens of billions nodes. As 
semantic web gains prominence and natural language 
processing improves, we shall see an exponential growth in 
graph structured data sets. 

A basic type of computation over graphs that appears 
frequently in all such domains is that of graph traversal. 
Although the nature and characteristics of a graph exploration 
varies across domains and even across problems within a 
domain, they are commonly modeled after breadth-first-search 
(BFS). Further, other domain specific problems such as 
finding complexes in protein-interaction network, clustering of 
web-graphs, computing distance-distribution in graph models 
etc. utilize BFS operation. Since the total size of the graph and 
the content associated with every nodes and edges can run up 
to the order of several tera-bytes, scalable and efficient BFS 
computation when graphs reside in external memory would 
help advanced research across all these domains. This problem 
in literature has been referred to as external memory BFS or 
EM-BFS. 

We used the external memory package 0.39 implemented by 
Deepak Ajwani et al. [32] in our experiments. Table 9 shows 
the results of one of the algorithms, MR-BFS. We ran a range 
of tests on a dataset size of 200 GB and compared the 
performance of three different storage media (RAM drive, 
flash drives, and spinning disks) with similar and comparable 
configurations. The results showed that RAM drive is on 
average about 2.2x faster than flash drives, and flash drives 
are about 2.4x faster than spinning disks for an overall 
speedup of 5.2x. The speedup is substantial but not as good as 
expected, which could be explained by the mix of bandwidth 
and latency bound (sparse and dense) accesses in traversing 
the test graph. As previous works [14] observed, write-
intensive nature of an application might also be the cause.  

 
TABLE 9. AVERAGE MR-BFS RESULTS ON THE DASH SUPERNODE FROM 
DIFFERENT STORAGE MEDIA 

 RAM 
Drive 

Flash 
Drives 

Spinning 
Disks 

Total I/O Time (sec) 854 (5.2x) 1862 (2.4x) 4444 

Total Run Time (sec) 1917 (3.0x) 3130 (1.8x) 5752 

 

B. Palomar Transient Factory  

Astrophysics is transforming from a data-starved to a data-
swamped discipline, fundamentally changing the nature of 
scientific inquiry and discovery. New technologies are 
enabling the detection, transmission, and storage of data of 
hitherto unimaginable quantity and quality across the 
electromagnetic, gravity and particle spectra. These data 
volumes are rapidly overtaking the cyber infrastructure 

resources required to make sense of the data within the current 
frameworks for analysis and study. Time-variable 
(“transient’’) phenomena, which in many cases are driving 
new observational efforts, add additional complexity and 
urgency to knowledge extraction: to maximize science returns, 
additional follow-up resources must be selectively brought to 
bear after transients are discovered while the events are still 
ongoing. 

Current transient surveys such as the Palomar Transient 
Factory (PTF) [33] and the La Silla Supernova Search [34] 
(100GB/night each) are paving the way for future surveys such 
as the Large Synoptic Survey Telescope (LSST) [35] 
(15TB/night producing petabytes of data each year). The future 
sky surveys assess their effectiveness and scalability on current 
surveys such as PTF, in order to maximize the scientific 
potential of the next generation of astrophysics experiments. 
Two of the major bottlenecks currently confronting PTF are I/O 
issues related to image processing (convolution of a reference 
image with a new one followed by image subtraction) and 
performing large, random queries across multiple databases in 
order to best classify a newly discovered transient. PTF 
typically identifies on the order of 100 new transients every 
minute it is on-sky (along with 1000 spurious detections related 
to image artifacts, marginal subtractions, etc.). These objects 
must be vetted and preliminarily classified in order to assign 
the appropriate follow-up resources to them in less than 24 
hours, if not in real-time. This often requires performing more 
than 100 queries every minute through 8 different and very 
large (~100GB - 1 TB) databases. The response times of these 
queries are crucial for PTF. The forward query and the 
backward query are two most significant queries used 
repeatedly by PTF.  The average times to run these queries on 
DASH and the existing production infrastructure used by PTF 
(with same cache-size, indexes) are provided in Table 10. The 
difference in query response times can be attributed to the 
random IOPS provided by SSDs which allow faster index 
scans of the database rather than sequential table scans. The 
two-order-of-magnitude improvement in response times makes 
it possible for PTF to keep up with real-time demands. 

 
TABLE 10. COMPARISON OF PTF QUERY RESPONSE TIMES ON DASH AND PTF 
PRODUCTION DATABASE WITH SPINNING DISKS. 

Query type Forward Query Backward Query 

DASH-IO (SDSC) 11ms (124x) 100s  (78x) 

Existing DB 1361ms 7785s 

 

C. Biological pathways analysis 

Systems level investigation of genomic information requires 
the development of truly integrated databases dealing with 
heterogeneous data, which can be queried for simple 
properties of genes as well as for complex biological-network 



 

level properties. BiologicalNetworks [36] is a Systems 
Biology software platform for analysis and visualization of 
biological pathways, gene regulation and protein interaction 
networks. This web-based software platform is equipped with 
filtering and visualization tools for high quality scientific 
presentation of pathway analysis results. 

The BiologicalNetworks platform includes a general-purpose 
scalable warehouse of biological information, which integrates 
over 20 curated and publicly contributed data sources 
including experimental data and PubMed data for eight 
representative genomes such as S.cerevisiae and 
D.melanogaster. BiologicalNetworks identifies relationships 
among genes, proteins, small molecules and other cellular 
objects. The software platform performs a large number of 
long-running and short queries to the database on postgres. 
These queries are a bottleneck for researchers on this domain 
when they have to work on the pathways using the visual 
interface. In our performance tests, we ran some popular 
queries of BiologicalNetworks on three different media on 
SDSC DASH including hard disks, SSDs and memory (using 
vSMP). 

 
TABLE 11: QUERY RESPONSE TIMES OF POPULAR QUERIES IN BIOLOGICAL 
NETWORKS ON DIFFERENT STORAGE MEDIA (HARD DISK, SSD AND MEMORY) 
AND THEIR SPEED-UP IN COMPARISON TO HARD DISK. 

Query Q2C Q3D Q5F Q6G Q7H 

RAMFS 
(vSMP) 

11338ms 
(1.42x) 

62850ms 
(3.60x) 

3ms 
(186x) 

17957ms 
(1.54x) 

211ms 
(5.64x) 

SSD 11120ms 
(1.45x) 

176873ms 
(1.28x) 

11ms 
(50.73x) 

24879ms 
(1.11x) 

495ms 
(2.41s) 

HDD 16090ms 226023ms 558ms 27661ms 1191ms 

 

Again, as observed in the PTF queries (Table 10), the queries 
of the Biological Networks also show improvement in their 
response times. But, speedup is not linear or constant across 
all the queries as each query uses a different query plan 
producing different quantity of results (or the number of rows 
scanned and selected from the relational database). Heavily 
random access patterns speedup by as much as two orders-of-
magnitude while long sequential accesses run just a bit faster. 

In summary some real applications speed up between 5x and 
nearly 200x on DASH depending on the I/O access patterns 
and how much the application can benefit from the random 
IOPS offered by DASH.  

V. MORE DISCUSSIONS ON FLASH DRIVES 

A. Performance downgrading 

Performance downgrading is one of the concerns about 
replacing spinning disks with flash drives. There are mainly 
two causes for the problem. First, fragmentation has proved to 
be very harmful to the performance [11]. Fortunately, with our 

high-end SLC flash drives, most of the performance 
downgrading is still acceptable, especially the random read 
performance. Furthermore, some test conditions in the above 
paper are extreme and not common in normal uses. 

Also, filling up a new drive will also hurt the performance. A 
new drive out of factory might be marked as free. However, 
since there is no abstraction of free blocks in flash drives [12], 
the drive will be full permanently after each block is written at 
least once. This will keep the full cleaning pressure and 
downgrade the performance. To solve the problem, the 
operating system and the drive firmware have to support the 
TRIM instruction [37] to inform the drive when the content of 
a block is deleted. Linux has already supported this since the 
version 2.6.28. Intel® already released a firmware update with 
TRIM for its similar product X25-M [38] and the result is 
promising [39]. Hopefully, the X25-E drives will be supported 
in a near future. 

B. Reliability and lifetime 

By system reliability, we are concerned about both functional 
failures and bit errors. Mean Time Between Failures (MTBF) 
is a widely-used metric for functional failure rate. Without 
movable mechanical parts, flash drives are more robust and 
easier to protect. The X25-E drives used in DASH have an 
MTBF of 2,000,000 hours [18]. As for bit errors, the raw Bit 
Error Rate (BER) of SLC NAND flash is about 10-9~10-11, 
commercial products usually apply Error Correction Code 
(ECC) with different strengths to lower the rate. The final 
error rate after ECC correction is called Uncorrectable Bit 
Error Rate (UBER) [13]. The UBER of X25-E is 10-15 [18]. 
That means you will get one bit flip in about 6 days if you 
keep reading with the sustained speed of 250 MB/s. For 
practical workloads, the time will be much longer. Moreover, 
some products such as those from Fusion-IO or Pliant claim 
UBERs several orders of magnitude lower. 

The lifetime of a flash drive is related to its reliability, 
especially BER. BER increases while a block ages because of 
writes, i.e. Program/Erase (P/E) cycles. After some point, the 
flash controller will disable the block. The typical expected 
lifetime for SLC is 100,000 P/E cycles [15]. Manufacturers 
usually apply wear-leveling to distribute writes evenly across 
all the blocks. Our calculations indicate that under extreme use 
(constant write random access patterns at peak rate) the drives 
will not exhaust their write endurance for over 1 year. Real 
usage patterns will result in longer lives. To protect the 
system, people can adopt traditional methods such as RAID. 
Furthermore, flash lifetime can be predicted quite accurately 
with enhanced SMART (Self Monitoring, Analysis and 
Reporting Technology) including P/E cycle information. 

C. Flash-oriented hardware and software 

Flash-based SSD is a promising technology to replace 
traditional spinning disk. Its low latency and high throughput 
are going to improve the performance of storage systems 
dramatically. For example, in database systems, capacity is 
often traded for throughput. With flash drives’ high 



 

throughput, it is possible to replace hundreds of small spinning 
disks with just a few large flash drives [12]. To release the full 
potential of flash drives, the related hardware and software, 
such as host peripheral chipset, interconnect, RAID, and 
operating system, have to be modified or even re-designed. 
Especially, we found that RAID (hardware or software) is a 
limiting factor during our tuning process, and we are not the 
first one to observe the phenomenon [12]. As referred above, 
operating systems and drive firmware need to support TRIM 
instruction to avoid dramatic performance downgrading. With 
flash drives becoming widely accepted, we believe these 
related technologies will be stimulated to improve soon. 

VI. RELATED WORK 

A. ccNUMA machines 

ccNUMA means Cache Coherent Non-Uniform Memory 
Access. It is a hybrid architecture combining the merits of 
SMP (Symmetric Multi-Processing) and cluster. With SMP, 
people can program in the same way as on their PCs. It is the 
most desired architecture for parallel programmers. However, 
such architecture is not scalable and usually limited by 32 
processors/cores. To scale up, people usually group a bunch of 
SMP nodes together into a larger cluster. By this way, 
programmers might need to apply shared-memory 
programming model intra-node and message-passing model 
inter-nodes for optimal performance. ccNUMA machines try 
to turn the distributed memory on these SMP nodes into a 
single shared memory space by special hardware. There are a 
few commercial products around like the SGI Altix 4000 
series, HP Superdome, and Bull NovaScale 5000 series [40]. 
With these machines, people can program across all the nodes 
in shared-memory model. However, these products usually 
adopt proprietary technology based on customized hardware, 
and need a long development period, which makes their ratios 
of performance to price pretty low. As we will discuss in the 
next sub-section, vSMP is a software implementation of 
ccNUMA and is much more cost efficient. 

B. Distributed Shared Memory (DSM) 

Since ccNUMA is an expensive solution, people try to achieve 
the same function with a software implementation called 
Distributed Shared Memory (DSM). The idea was first 
proposed and implemented in IVY [41]. During the late 1980s 
and early 1990s, there were a lot of projects, such as 
TreadMarks [42], Shrimp [43], and Linda [44], inspired by the 
idea and trying to improve in different ways. Though the idea 
is very attractive, these systems didn’t get widely adopted. 
However, there appeared several commercial and academic 
DSM systems again recently [10] [45] [46]. We believe it is 
the right time to revisit the problem for several reasons. First, 
most of those old systems were developed in late 1980s and 
early 1990s and mainly worked with Ethernet. The high 
network latency limited their performance. With the low-
latency inter-connect like Infiniband [47] today, the limitation 
is largely eliminated. Second, the workloads today are 
changing. Data intensive applications are becoming dominant, 

and the requirement for large shared memory is becoming 
stronger. Last but not least, most of the new systems exploit 
the virtual machine technology and implement the DSM layer 
under the operating system and right above the hardware. This 
might bring more opportunities to optimize. Also, it provides a 
single system image to the operating system and eases the 
management burden. 

VII. CONCLUSIONS AND FUTURE WORKS 

We are entering the HPC era of data intensive applications. 
Existing supercomputers are not suitable for this kind of 
workloads. There is a 5-orders-of-magnititude gap in the 
current storage hierarchy. We designed and built a new 
prototype system called DASH, exploiting flash drives and 
remote memory to fill the gap. Targeting at random workloads, 
we tuned the system and achieved ~560K 4KB IOPS with 16 
flash drives and ~4.5M 4KB IOPS with 650GB RAM drive. 
With 3 real applications from graph theory, biology, and 
astronomy, we attained up to two-orders-of-magnitude 
speedup with RAM drives compared with traditional spinning 
disks. As for cost efficiency, flash is cheaper than DRAM but 
more expensive than disk yet the cost of operation (power) of 
flash is less than spinning disk.  

DASH is a prototype system of the even larger machine called 
Gordon, which has much more flash drives and memory. To 
achieve good performance with such a huge system, we need 
to figure out how to scale up the storage system and the DSM 
system. 

New storage media like flash and PCRAM is a hot research 
direction. How to integrate flash into the storage hierarchy is 
one of the difficult topics. It can be used as disk replacement, 
memory extension, disk cache, and more. We will investigate 
what is the best way to use flash in our systems. 
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