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Abstract—Resilience to failure is a key concern for next-
generation high-performance computing systems. The dominant
fault tolerance mechanism, coordinated checkpoint/restart, is
projected to no longer be a viable option on these systems due to
its predicted overheads. Rollback avoidance has the potential to
prolong the viability of coordinated checkpoint/restart by allow-
ing an application to make meaningful forward progress, perhaps
with degraded performance, despite the occurrence or imminence
of a failure. In this paper, we present two general analytic
models for the performance of rollback avoidance techniques and
validate these models against the performance of existing rollback
avoidance techniques. We then use these models to evaluate the
applicability of rollback avoidance for next-generation exascale
systems. This includes analysis of exascale system design questions
such as: (1) how effective must an application-specific rollback
avoidance technique be to usefully augment checkpointing in an
exascale system? (2) when is rollback avoidance on its own a
viable alternative to coordinated checkpointing? and (3) how do
rollback avoidance techniques and system characteristics interact
to influence application performance?

I. INTRODUCTION

Resilience is a key obstacle to next-generation extreme-
scale systems. If current predictions hold, the increased scale of
these systems could mean that they experience multiple failures
per hour [1]. Effective and efficient mechanisms for recovering
from or avoiding failures will be necessary for applications
to make meaningful forward progress. Although coordinated
checkpointing remains effective on current systems, the scale
of next-generation systems will result in more and more time
being taken away from the application for fault tolerance
activities (e.g., writing checkpoints, recovering from failures).
At the scales projected for the first exascale system, less than
half of the system’s time will be available for advancing the
application’s computation [2], [3].

Many approaches have been proposed to reduce the per-
formance impact of failures on checkpoint/restart systems.
These include failure prediction and preventive migration [4],
[5], replication-based approaches [2], [6], [7], fault-tolerant
algorithms [8]–[12], and software-based memory error correc-
tion [13]–[15]. The common principle underlying these ap-
proaches is that enabling an application to continue executing
(perhaps with some degradation) despite the occurrence or
imminence of a failure will improve its performance.

These techniques typically rely on reducing checkpointing
costs by significantly reducing the frequency with which the

application is forced to roll back to a previous checkpoint.
Analysis of these techniques is difficult, however, for two rea-
sons: (i) checkpoint/restart costs vary non-linearly with system
mean time to interrupt (MTTI) [16]; and (ii) these techniques
frequently can mitigate only a subset of system failures (e.g.,
memory corruption) [9]. As a result, the suitability of these
techniques in exascale systems is not always clear.

To address this problem, this paper presents a general
model for analyzing the performance impact of techniques for
avoiding failure. Its contributions include:

• A general conceptual model that captures the key
features of rollback avoidance techniques;

• Two analytic models of the impact of failure avoid-
ance on application performance, one when failure
avoidance is used in conjunction with coordinated
checkpointing and one when failure avoidance is used
as replacement for coordinated checkpointing;

• Case studies mapping the performance of both repli-
cation and fault prediction techniques to this model;

• An analysis of when rollback avoidance techniques
are viable either on their own or in concert with
coordinated checkpoint/restart in next-generation HPC
systems.

The remainder of this paper is organized as follows: the
next section provides background on these failure avoidance
techniques. Section III introduces our analytical models, while
Section IV provides validation of these models against a
previously validated simulator. Sections V and VI describe
two case studies using our models: process replication and
failure prediction, respectively. Section VII uses these models
to analyze the effectiveness of failure avoidance both with and
without checkpointing and how the performance of these tech-
niques drive the requirements of future systems. Section VIII
summarizes related work, and Section IX concludes.

II. BACKGROUND

The most widely-studied approaches for handling faults in
large-scale systems can be grouped into three broad categories:
failure avoidance, failure effect avoidance and failure effect
repair [17]. Failure avoidance techniques use prediction to
forecast when a failure is likely to occur and, based on this
prediction, take action to minimize the impact of the failure on
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the application. For example, sophisticated analysis of system
logs may provide enough advance notice to allow the processes
threatened by an imminent failure to be migrated to safer hard-
ware resources [4]. Failure effect avoidance techniques allow
the application to continue to execute despite the occurrence
of failures. This category includes fault tolerance algorithms,
replication, and software-based memory error correction. For
example, two matrices that are being multiplied together can
be augmented with redundant data that allows the contents of
the matrices to be reconstructed if a failure occurs [18]. Finally,
failure effect repair techniques restore normal execution after
the application has been compromised by a failure. The most
widely-studied method in this category is checkpoint/restart
and its variants.

In this paper, we focus on the first two categories: failure
avoidance and failure effect avoidance. The techniques in these
two categories allow the system to handle failures such that the
application need not roll back to a previous checkpoint. For
ease of exposition, we refer to these two categories collectively
as rollback avoidance.

III. AN ANALYTICAL MODEL OF ROLLBACK AVOIDANCE

Several models exist for specific rollback avoidance tech-
niques (e.g. [2], [4]), but not for rollback avoidance in general.
A general analytical model of rollback avoidance is important
for understanding the strengths, limitations, and tradeoffs in-
volved with these techniques. Because these techniques are
frequently used in concert with other techniques, for example
checkpoint/restart, understanding their general behavior trade-
offs can provide important guidance on the design of next-
generation systems. It can also guide research on current and
future rollback avoidance techniques, providing information
about the best way to address resilience challenges.

A. Developing a Model of Rollback Avoidance

We begin by a developing a general conceptual model of
rollback avoidance. We model rollback avoidance stochasti-
cally in terms of two characteristics: (i) the ability to avoid
rollback; and (ii) the overhead costs. When a failure occurs,
a rollback avoidance technique prevents the application from
experiencing the failure with probability pa, the rollback avoid-
ance probability. We assume that failures are exponentially
distributed. We further assume that the failures that result in
rollback despite the best efforts of these techniques are also
exponentially distributed. Effectively, this probability describes
an increase in the system Mean Time To Interrupt (MTTI)
because it represents a probabilistic decrease in the number of
failures that occur in the system. The resulting expression of
system MTTI (M ′) is shown in Equation 1.

M ′ =
Θ

1− pa
(1)

where

Θ = native system MTTI

pa = rollback avoidance probability

We model overhead as an extension of the application’s
solve time. Rollback avoidance overhead (oa) describes the
overhead cost as a fractional increase in solve time due to

a rollback avoidance technique. This fraction represents the
expected increase in solve time due to the overhead imposed
by rollback avoidance, including preparation for future fail-
ures, migration to avoid imminent failures, and application
degradation (e.g., slower rate of convergence) due to partial
correction. However, it does not include time spent recovering
from a failure that could not be avoided. We assume that the
application is otherwise unperturbed. The resulting expression
of the application’s solve time (T ′

s) is shown in Equation 2.

T ′
s = Ts(1 + oa) (2)

where

Ts = application’s native solve time

oa = overhead of rollback avoidance

To understand how these parameters map to two rollback
avoidance techniques, we consider two examples: repairing
memory errors and proactive process migration. When an ECC
error is detected in memory, the memory controller raises a
machine check exception (MCE) in the processor. Current HPC
operating systems terminate the offending process or reboot the
entire node in response to a MCE. However, some proposed
techniques allow detected memory errors to be corrected by
either using application knowledge [9], [19] or by leveraging
redundant information in the application’s memory [14]. In
these cases, pa is the probability that a memory error can
be corrected such that the application can continue without
experiencing a failure and rolling back. The overhead, oa,
of these techniques is the expected value of the sum of the
additional time that is necessary to prepare for failure and the
time required to recover from memory errors as they occur.

Another approach to rollback avoidance is to proactively
migrate processes away from hardware that is predicted to fail.
A common approach is to continuously examine system event
logs looking for sequences of log entries that are believed to
be indicative of impending failure [20]. Another approach is
to use health monitoring to determine when a particular node
is likely to fail based on environmental observations (e.g.,
temperature, input voltage, etc.) [21]. In both cases, pa is equal
to the recall of the prediction mechanism. Recall captures the
fraction of failures in the system that are correctly predicted.
The overhead, oa, of these techniques is comprised of two
principal components: (i) the cost of the prediction mechanism,
including gathering and processing the information necessary
to make predictions; and (ii) the cost of migrating processes
following the prediction of a failure, including costs due to
false positives.

B. Augmenting Coordinated Checkpointing

Given this general conceptual model, we build an analyt-
ical model of the impact of rollback avoidance techniques
on application performance when used in conjunction with
traditional coordinated checkpointing. We begin with Daly’s
model1 of application performance [16]. Our conceptual model
of rollback avoidance allows us to modify the system’s mean
time to interrupt (MTTI) and the application’s solve time to

1We could have used our conceptual model to extend any accurate applica-
tion performance model. We chose Daly’s because it is accurate and widely
accepted.
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account for the impact these techniques have on application
performance. The resulting expression for application runtime
(Tw) is shown in Equation 3.2 Because rollback avoidance ef-
fectively increases the system’s MTTI, the optimal checkpoint
interval also increases.

Tw(pa, oa) = M ′eR/M ′(
e(τ

′
opt+δ)/M ′) − 1

) T ′
s

τ′opt
(3)

where

R = time to required to restart a failed node

M ′ = system MTTI with rollback avoidance

(see Equation 1)

δ = checkpoint commit time

τ′opt = optimal checkpoint interval computed using M ′

T ′
s = solve time of the application (see Equation 2)

C. Replacing Coordinated Checkpointing

It is also instructive to consider how effective rollback
avoidance would need to be in order to be a viable replacement
for coordinated checkpoint/restart. We again build upon our
conceptual model of rollback avoidance and Daly’s model of
coordinated checkpoint/restart. The resulting model of roll-
back avoidance in the absence of checkpoint/restart is shown
in Equation 4.3

Tw(pa, oa) = M ′eR/M ′
(eT

′
s/M

′ − 1) (4)

where

R = time to required to restart a failed node

M ′ = system MTTI with rollback avoidance

(see Equation 1)

T ′
s = solve time of the application (see Equation 2)

IV. VALIDATION

In this section, we validate the accuracy of the two models
we introduced in the preceding section. We accomplish this
by comparing the application runtime predicted by our model
to the application runtime predicted by a freely available
validated [2], [22], [23] simulator. Because the simulator did
not account for rollback avoidance, we modified it to ignore
failures on simulated nodes with probability pa. Following a
node failure, the interarrival time of the next failure is the sum
of the interarrival times of the failures that are successfully
avoided and the interarrival time of the next failure that cannot
be avoided.

Figure 1 shows a comparison between our model of the
impact of failure avoidance and coordinated checkpointing

2Although Tw is undefined for pa = 1.0, we note that the model is correct
in the limit:

lim
pa→1.0

M ′eR/M′(
e(τ

′
opt+δ)/M′) − 1

) T ′
s

τ′opt
= T

′
s

3As with the previous model, Tw is undefined when pa = 1.0. However,
the model is again correct in the limit:

lim
pa→1.0

M ′eR/M′
(eT

′
s/M

′ − 1) = T
′
s

(Equation 3) and the modified simulator. To minimize the
modifications to the simulator, the simulator’s computation
of the optimal checkpoint interval is unmodified. As a result,
for the purposes of this comparison, we modified the model
such that it computed the checkpoint interval based on the
system MTTI without rollback avoidance. Each of the three
subfigures show the results for a different pair of values for
oa and pa. In each case, the application runtime predicted by
the model closely matches (within 1%) the value predicted by
the simulator.

Figure 2 shows a comparison between our model of the
impact of rollback avoidance (Equation 4) and the modified
simulator. Once again, each of the three subfigures show the
results for a different pair of values for oa and pa. In each
case, the application runtime predicted by the model closely
matches (within 2%) the value predicted by the simulator.

V. CASE STUDY: PROCESS REPLICATION

To demonstrate the power of our model we use it to
examine an existing process replication library, rMPI [2]. rMPI
is a user-level MPI library that facilitates process replication
in HPC systems by ensuring that each process and its replica
receive all application messages even if one of the processes
fails.

A. Model Parameters

Modeling rMPI requires appropriate values for the over-
head (oa) and the avoidance probability (pa). Naively, the
overhead is equal to the overhead of replicating messages.
Because each process and its replica run simultaneously, this
would allow us to accurately model time-to-solution. However,
this underestimates the cost of replication. To more completely
account for the cost of replicating every process, oa must be at
least 1.0. In this case, our model will not yield raw execution
time; it measures resource usage in terms of the number of
node-hours required for the computation.

The runtime overhead of rMPI is generally less than 5%,
depending on the application [2]. Because this overhead affects
each process and its replica, we choose oa = 1.10. The
probability of avoiding the effects of a failure by using rMPI
is given by the birthday problem [2]. On average, the number
of faults that will occur before the application observes a node
failure (i.e., a process and its replica are down simultaneously)
is given by Equation 5.

F (n) ≈
√

πn

2
+

2

3
(5)

where n is the total number of nodes that comprise the system.
The probability of correcting any single failure can be derived
from this expression and is shown in Equation 6.

pa(n) =
3
√
πn−√2

3
√
πn+ 2

√
2

(6)

The remainder of the model parameters are duplicated from
the evaluation of rMPI. A summary of the model parameters
is shown in Table I.
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(a) pa = 0.00, oa = 0.00
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(b) pa = 0.25, oa = 0.10
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(c) pa = 0.75, oa = 0.30

Figure 1. Augmenting C/R. Validation of our general analytic model of the impact of augmenting coordinated checkpoint/restart with rollback avoidance on
application performance against an existing simulator [2], [22]. We modified the simulator to account for rollback avoidance. The model and the simulator use
identical values for the solution time (Ts = 168 hours), the checkpoint commit time (δ = 5 minutes) and node MTBF (Θn = 5 years). Both use the optimal
checkpoint interval (τopt). The subfigures of this figure compare the results across several values of pa and oa. The values predicted by the model and the
simulator error differ by less than 1% in all cases.
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(b) pa = 0.25, oa = 0.10
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Figure 2. Replacing C/R. Validation of our general analytic model of the impact of replacing coordinated checkpoint/restart with rollback avoidance on
application performance against an existing simulator [2], [22]. We modified the simulator to account for rollback avoidance. The model and the simulator use
identical values for the solution time (Ts = 168 hours) and node MTBF (Θn = 5 years). The subfigures of this figure compare the results across several values
of pa and oa. The values predicted by the model and the simulator error differ by less than 2% in all cases.

Parameter Description Value

Ts SOLVE TIME 168 hours
Θn NODE MEAN TIME TO INTERRUPT (MTTI) 5 years
δ CHECKPOINT COMMIT TIME 15 minutes
R RESTART TIME 15 minutes
oa ROLLBACK AVOIDANCE OVERHEAD 1.10
pa PROBABILITY OF ROLLBACK AVOIDANCE see Equation 6

Table I. MODEL PARAMETERS FOR EXAMINING THE PERFORMANCE

OF PROCESS REPLICATION.
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Figure 3. Comparison of application efficiency with and without pro-
cess replication. The results obtained using our approach-independent model
closely match existing data on process replication (see Figure 7 of Ferreira [2]).
These data were collected using the parameters in Table I.

B. Model Performance

Given our model and this set of parameters, we can com-
pare the efficiency of process replication against the efficiency
of coordinated checkpoint/restart. Figure 3 shows the system
efficiency as a function of system size both with and without
process replication. The key observation is that this figure
closely matches the data collected in the evaluation of rMPI
(cf. Figure 7 in [2]). For small systems, the overhead of
replication is prohibitive. However, as system size increases
and failures become more likely, replication is more efficient
than the baseline approach.

VI. CASE STUDY: FAULT PREDICTION

Techniques for predicting the occurrence of failures have
been widely studied [4], [20], [25]–[27]. Accurately predicting
failures before they occur may allow the system to take
corrective action that could prevent the application from being
compromised. The benefit of this family of approaches is
typically characterized by recall: the fraction of the total
number of failures that can be predicted. In terms of our model,
pa is equal to the method’s recall. There are two principal
costs of failure prediction: (i) runtime overhead (ort), the costs
associated with processing system information (e.g., collecting
and analyzing system log files); and (ii) false positive overhead
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Figure 4. Impact of failure prediction on the fraction of waste time (i.e., time spent not doing useful work). These result closely match existing modeling
and simulation data for exponentially distributed failures (cf. [24] : compare the good predictor results to the red line in Figure 3(b); compare the bad predictor
results to the red line in Figure 4(b) [24]). These data demonstrate that our model is capable reproducing key results in the field while being general enough to
a account of additional important scenarios.

(ofp), the costs associated with unnecessarily initiating proac-
tive response (e.g., needlessly migrating a process). As shown
in Equation 7, the false positive overhead can be expressed in
terms of the recall and precision of a given prediction method.

ofp =
(1− P )R

PM
c (7)

where

P = precision of the prediction method

R = recall of the prediction method

c = average time required for a proactive response

M = system MTTI

As a result, we can express the overhead of failure prediction
as shown in Equation 8.

oa =
(1− P )R

PM
c+ ort (8)

where

ort = runtime overhead of the prediction method
expressed as a fraction of total execution time

Figure 4 compares the results of our model to existing data on
the impact of fault prediction on application performance [24].
Specifically, we compare two specific cases of predictor
performance. Figure 4(a) shows the fraction of waste time
(i.e., time spent by the system doing something other than
directly advancing the application’s computation) for a “good”
predictor (P = 0.82, R = 0.85) as a function of system
size. Figure 4(b) shows the same result for a “bad” predictor
(P = 0.4, R = 0.7). These results demonstrate that our model
closely matches existing modeling and simulation data on the
the impact of fault prediction (cf. [24]: compare the red lines
in Figure 3(b) to the good predictor results (Figure 4(a)),
and the red lines in Figure 4(b) to the bad predictor results
(Figure 4(b))). We obtain similar results by using our model
to reproduce the other figures presented by Aupy et al. that
assume exponentially distributed failures. Although our model
is technique-independent, we are able to closely match the
results of this technique-specific model.

Our model also allows us to more closely examine the
claim–first articulated by Aupy et al. [24]–that recall is more

important than precision for fault prediction. In Figure 5,
we examine the relative impacts of precision and recall on
application performance. For the data in this figure, we fixed
the system MTTI (M ) at 45 minutes, a value that is well within
the range currently projected for the first exascale machine.
We also fixed the proactive response cost at two minutes.
While this value is longer than the prediction window of
current techniques, it is also shorter than most current proactive
measures (e.g., checkpointing) would require (cf. [20]). The
data in this figure show that above a modest threshold (e.g.,
50%—many modern methods are above 90%), precision has
relatively little influence on application execution time.

Figure 6(a) illustrates the impact of precision relative to
runtime overhead. The data in this figure were collected with
the recall value fixed at 40%—a value achieved by many
current methods. Each of the lines in this figure corresponds to
a different precision, ranging from 25% to 95%. We observe
that these four lines almost entirely overlap one another.
Although the existing literature is largely silent on the costs
of predicting failures, this figure shows that runtime overhead
has a much larger effect on application runtime than precision
does. Moreover, in this configuration, once the runtime over-
head exceeds 20% the benefits of failure prediction disappear
and application execution time increases. Finally, the impact
of runtime overhead is significant. Below 20% the slopes of
these lines are nearly -1; any increase in the runtime overhead
results in a commensurate increase in execution time. As a
result, efforts to improve precision that result in increases in
the runtime overhead will yield little benefit.

Figure 6(b) shows the impact of recall relative on runtime
overhead. The data in this figure were collected with the
precision value fixed at 95%. Similar to the previous figure,
each of the lines in this plot correspond to a different recall
value. If we consider horizontal slices of this figure, we
observe that increasing the recall value even if it results in
relatively large increases in the runtime overhead may be
fruitful. For example, suppose that we have a method for
which the runtime overhead is 0% and the recall is 50% (i.e.,
in Figure 6(b) our method sits at the intersection of the orange
curve and the y-axis–a speedup of 1.31). For a recall value of
75%, we would see the same speedup if the runtime overhead
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Figure 6. Comparing the relative impact of precision and recall on application speedup as a function of the runtime overhead of fault prediction. These figures
confirm that precision has much less impact on application performance than either recall or runtime overhead.

was 17.8%. In other words, any method that increases the recall
value from 50% to 75% and imposes a runtime overhead of
less than 17.8% will yield a benefit. The point is that this figure
shows that innovative techniques that increase recall—even at
the cost of runtime overhead—may increase the overall benefit
of failure prediction.

VII. ANALYSIS & DISCUSSION

A. Designing Rollback Avoidance for Exascale

Due to the projected overheads of coordinated check-
point/restart at extreme-scale, significant effort has been de-
voted to developing new rollback avoidance techniques. In
particular, considerable attention has been paid to application-
specific techniques.

In this section, we use our model to explore the projected
design space of the first exascale system to determine where
new application-specific techniques may offer the greatest
benefits. We begin by examining how the relationship between

the avoidance probability and the runtime overhead affects the
design. For many application-specific methods—fault-tolerant
algorithms, for example—the overhead represents how much
longer the computation takes to converge than if no error had
occurred. Figure 7 shows the application speedup for several
avoidance probabilities as a function of overhead. By way of
comparison, the dashed horizontal lines in this figure show
the speedups that can be achieved using existing application-
independent techniques. Even if they impose relatively large
overheads, there is room for application-specific techniques to
outperform existing techniques if they can avoid a high per-
centage of all sources of rollbacks. For the many application-
specific methods that can only avoid rollbacks that are due
to a subset of system failures, achieving such high avoidance
probabilities will be challenging.

Figure 7 represents a single point in the exascale design
space. To evaluate the potential benefits over the entire design
space, we consider a strawman. Our strawman is able to
avoid 80% of all rollbacks while imposing a 10% overhead.
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These results were generated using a solve time (Ts) of 168 hours, a system
MTTI (M ) of 45 minutes, a checkpoint commit time (δ) of 5 minutes, a
restart time (R) of 10 minutes, and no runtime overhead (oa = 0.0). Speedup
is calculated relative to the execution time with no rollback avoidance.

This is an aggressive strawman given that many application-
specific techniques only protect against rollbacks caused by
memory corruption, which is a fraction of all rollbacks. Given
this strawman, we compare its relative performance to three
existing techniques: replication, fault prediction (ELSA) and
FlipSphere. For replication, we assume a perfectly strong
scaling application (i.e., running the same application with
process replication requires twice as much time). ELSA is a
fault prediction toolkit with a precision of 93% and a recall
of 43% [20]. Although the runtime overhead of ELSA has not
been publicly documented, we assume that it is no more than
5%. FlipSphere is a software-based memory error correction
library. It protects 90% of application memory and imposes an
overhead of 40%. Because FlipSphere only protects against
rollbacks that are due to memory corruption, its protective
benefit is less than the fraction of memory that it protects. We
generously assume that 50% of all rollbacks are due to some
form of memory corruption. As a result, we use pa = 0.45 for
FlipSphere in our analysis. Figure 8 shows the results of the
comparison of our strawman to these three techniques. In these
heat maps, the blue regions are where our strawman provides
little or no improvement, the red regions are where our
strawman offers significant benefits. These figures indicate that
the benefits of this strawman depend on where in this design
space the first exascale system appears. For systems with small
MTTI and small checkpoint bandwidths, our strawman will
be outperformed by replication. For systems with large MTTI
and large checkpoint bandwidths, our strawman will be out-
performed by fault prediction. However, somewhere between
these two extremes in the design space there appears to be a
significant opportunity for rollback avoidance techniques such
as our strawman to provide significant benefits.

B. Replacing Coordinated Checkpoint/Restart

Throughout this paper, we have focused on using rollback
avoidance to reduce the performance impact of coordinated
checkpoint/restart. In principle, rollback avoidance could also

be used as a replacement for coordinated checkpointing.
However, for any rollback avoidance to be an effective re-
placement, its probability of avoiding rollback would have be
very close to 1.0. To see why this is, suppose we have a
a technique that avoids 90% of rollbacks on a system with
an MTTI of 1 hour. In this case, the effective MTTI given
by Equation 1 is 10 hours. Given exponentially distributed
failures, the probability of completing a 168-hour job without
encountering a failure (which is the criteria for success in
this case) is approximately 5.0 × 10−8. Figure 11 illustrates
this phenomenon more concretely. We discuss this figure in
more detail later, but for our current purposes we note the
relative performance of coordinated checkpoint/restart (C/R
only) and a rollback avoidance technique that avoids 99%
of rollbacks and imposes no overhead (Replacing C/R). Even
for this effective technique, there are still circumstances in
which it cannot compete with coordinated checkpoint/restart.
In particular, for values of system MTTI below one hour
this hypothetical replacement technique is no longer com-
petitive with traditional coordinated checkpointing. Therefore,
our model shows that rollback avoidance alone is unlikely to
perform well on exascale systems.

C. Assessing the Impact of Model Parameters

Our model for predicting application performance also
allows for a careful exploration of the design-space for rollback
avoidance techniques. Examining the characteristics that have
the greatest impact on application can inform the design,
development and refinement of current and future rollback
avoidance techniques. In this section, we consider the impact
of three of our model’s parameters: (i) probability of rollback
avoidance (pa); (ii) rollback avoidance overhead (oa); and
(iii) system MTTI (M ).

1) Probability of Rollback Avoidance: Combining rollback
avoidance techniques and coordinated checkpoint/restart has
the potential to improve application performance by reducing
the frequency with which the application is forced to roll back
to a previous checkpoint. We begin by considering the impact
that the probability of rollback has on application performance.
Figure 9 shows the decrease in application runtime (i.e.,
speedup) as a function of the system MTTI for several values
of pa. To isolate the impact of pa, we consider approaches
that impose no overhead (i.e., oa = 0.0). To put the system
MTTI into context, a system MTTI of 0.5 hours corresponds
to a system comprised of 65,536 (64Ki) nodes, each with an
MTTI of 3.75 years. Similarly, a system MTTI of 8 hours
corresponds to a system comprised of nodes whose MTTI is
60 years. These two values roughly represent the range of
node MTTIs that are currently projected for the first exascale
system [1].

The most striking feature of this figure is how unreliable
the system must be before even very good rollback avoidance
techniques (e.g., able to avoid rollback 80% of the time)
significantly improve application performance. For systems
with an MTTI greater than 8 hours, we observe very little
speedup in application runtime. This is an especially stark
result given that these figures assume zero overhead. However,
for unreliable systems (e.g., systems with an MTTI that is less
than 2 hours) rollback avoidance yields significant benefits, in
some case reducing the application runtime by more than 81%.
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Figure 8. Heatmaps showing the improvement of a strawman application-specific technique (pa = 0.80, oa = 0.10) against three existing application-
independent techniques. Each of these heatmaps covers the range of MTTI (M ) and an aggregate checkpoint commit bandwidth (β) that is currently projected
for exascale. We assume a system comprised of 128Ki nodes, each of which has 8 GiB of memory. These figures collectively show that this aggressive strawman
would improve application performance over a fraction of the exascale design space.
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The reason for this behavior is due to a phenomenon that
is closely related to Amdahl’s Law [28]. An application that
runs on a system with an MTTI of eight hours operates with
an efficiency of 85%. In other words, 85% of the system time
required to run the application is used to perform useful work.
A direct consequence of this fact is that the maximum possible
speedup is approximately 18% (1.00/0.85). The dashed curve
in Figure 9 shows the maximum speedup as a function of
system MTTI. This curve represents the maximum application
speedup that could be achieved if all wasted time (e.g.,
writing checkpoints, restarting nodes, redoing lost work) was
eliminated. Until the system MTTI drops below approximately
8 hours, even heroic efforts to eliminate wasted system time
will yield only modest gains in application speed.

2) Rollback Avoidance Overhead: We next consider the
impact of the overhead of rollback avoidance techniques on
application performance. Figure 10 shows the relationship
between the probability of avoiding rollback and the over-
head that avoidance imposes on the application. This figure

considers a case where the efficiency of the application with
checkpoint/restart is low: the system MTTI is low (45 minutes)
and the checkpoint commit time is high (15 minutes). Although
these values are well within the range projected for the
first exascale system, they represent a system in which less
than half of the application’s runtime is available for useful
computation. This figure also demonstrates the importance of
minimizing the overhead of rollback avoidance for techniques
that only avoid a modest fraction of failures. For example,
a technique that imposes a 20% overhead will not improve
application performance unless it is able to avoid more than
23% of all failures. In contrast, reducing the overhead to 10%,
shows improvement when avoiding just 12% of failures. For
techniques that avoid a large fraction of failures (e.g., more
than 70%), overhead has a lesser impact; even when overhead
consumes a significant fraction of the application’s system time
we observe application speedup.

3) System MTTI: As we have already observed, system
MTTI has an (unsurprisingly) large impact on the effectiveness
of rollback avoidance mechanisms. To isolate the effects
of system MTTI and to reduce the number of dimensions
in the configuration-space, we consider three representative
approaches to fault tolerance: (i) coordinated checkpoint/restart
only; (ii) coordinated checkpoint/restart augmented with a
rollback avoidance technique for which the probability of
failure avoidance is 25% and the overhead is 10%; and (iii) a
rollback avoidance technique that is able to avoid 99% of
all failures with 1% overhead. All other parameters are taken
from Table I. We consider a range of MTTIs from 30 minutes
to 64 hours. Figure 11 shows the performance of these three
approaches as a function of system MTTI. The approach that
yields the best application performance depends on the system
MTTI which of three different regions a system is operating
in. In the configuration shown in this figure, augmenting coor-
dinated checkpoint/restart with rollback avoidance is the most
effective approach for unreliable systems, those with an MTTI
below approximately 81 minutes. For reliable systems, those
with an MTTI above approximately 2.9 hours, the rollback
avoidance technique by itself is most effective. Coordinated
checkpoint/restart is the preferred approach in a small range
of system MTTI values between these two extremes.
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VIII. RELATED WORK

A number of approaches for avoiding rollback have been
proposed [2], [4], [9], [14], [19], [21]. In addition, several
approach-specific models have been developed to evaluate
the performance impact of these approaches on applications
running on extreme-scale systems. Ferreira et al., for example,
construct a probabilistic model for process-level replication
in the context of high-performance computing [2]. Using this
model, they show where in the exascale design-space replica-

tion outperforms traditional coordinated checkpoint restart to
a parallel filesystem.

Wingstrom introduced the notion of modeling waste time
(i.e., time not available for application computation) rather
than total application execution time [29]. Instead of building
on Daly’s checkpointing model, the existing models of waste
time optimize for steady-state operation rather than per-job
performance. This approach has been widely adopted in the
fault prediction literature. Cappello et al. used this model
to evaluate the performance impact of preventive migration
and preventive checkpointing [5]. Gainaru et al. incorporate
precision and recall into the model to evaluate the effectiveness
of using signal processing to predict failure [4]. Aupy et al.
uses the model to examine the impact of fault prediction on
preventive checkpointing [24]. They also contend that Daly’s
model of the optimal checkpoint interval contains an error and
propose an alternative formulation.

Unlike these technique-specific models, the model de-
scribed in this paper deals with the class of approaches in
general and can reproduce the results of at least two approach-
specific models. Moreover, by considering rollback avoidance
generally our model allows us to provide guidance to the
design and development of future rollback avoidance tech-
niques. It also facilitates direct comparisons between proposed
approaches.

IX. CONCLUSIONS

In this paper, we introduced and validated two analytical
models for evaluating the impact of rollback avoidance on
application performance in large-scale systems. These mod-
els allow us to consider failure avoidance both in conjunc-
tion with coordinated checkpointing and in isolation. Using
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these models, we examined the impact of failure avoidance
techniques based on system characteristics. In particular, we
showed that for reliable systems, using rollback avoidance
to augment checkpointing yields only modest performance
gains. However, as systems grow in size and failures occur
more frequently, rollback avoidance can yield significant im-
provements. We also showed that even very effective roll-
back avoidance techniques are unlikely to replace coordinated
checkpointing unless future systems are much more reliable
than currently projected. More broadly, these models allow for
an exploration of system and application parameters for which
rollback avoidance can potentially provide significant benefits.
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