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Abstract—Logistic regression and linear SVM are useful
methods for large-scale classification. However, their distributed
implementations have not been well studied. Recently, because
of the inefficiency of the MapReduce framework on iterative
algorithms, Spark, an in-memory cluster-computing platform, has
been proposed. It has emerged as a popular framework for large-
scale data processing and analytics. In this work, we consider a
distributed Newton method for solving logistic regression as well
linear SVM and implement it on Spark. We carefully examine
many implementation issues significantly affecting the running
time and propose our solutions. After conducting thorough
empirical investigations, we release an efficient and easy-to-use
tool for the Spark community.

I. INTRODUCTION

Logistic regression (LR) and linear support vector machine
(SVM) [1], [2] are popular methods in machine learning and
data mining. They are useful for large-scale data classification.
Many efficient single-machine methods for training these mod-
els are well studied [3]. However, the extremely large amount
of data available nowadays is far beyond the capacity of a
single machine. We therefore need more machines to store the
data in memory for efficiently computations. MapReduce [4]
is a popular framework for distributed applications with fault
tolerance. Nevertheless, the heavy disk I/O of reloading the
data at each MapReduce operation is an obstacle of developing
efficient iterative machine learning algorithms on this platform.

Recently, Spark [5] has been considered as a great alter-
native of MapReduce in overcoming the disk I/O problem.
Spark is an in-memory cluster-computing platform that allows
the machines to cache data in memory instead of reloading the
data repeatedly from disk. Although in-memory computing is
a solution to reduce the disk I/O, developing an efficient and
stable solver of LR and linear SVM on Spark is never easy. In
the next paragraph, we list some important issues that should
be considered.

First, for supporting fault tolerance, Spark applies read-
only resilient distributed dataset (RDD) [6]. Without consid-
ering the properties of RDDs carefully, the price of fault
tolerance may be expensive. Second, Spark is new and still
under development, so the performance of its APIs is not clear.
We therefore must carefully design criteria and experiments to
analyze the performance of different possible implementations.

⇤ This work was done when Ching-Pei Lee was at National Taiwan
University.

Third, in contrast to traditional low-level communication in-
terface like MPI [7] that supports both all-reduce operations
and master-slave implementations, Spark only provides the
master-slave structure. Thus, two types of communications are
required as follows. The master machine first assigns the tasks
and ships the necessary variables to the slave machines. The
slave machines then send the computed results back to the
master machine. To decrease the overheads of this structure, a
discreet design is required.

In this paper, we consider a distributed version of the trust
region Newton method (TRON) proposed by [8] to solve
LR and linear SVM. Distributed TRON has recently been
shown to be efficient with MPI in [9], but has not been
studied on fault-tolerant distributed platforms such as Spark.
We detailedly check the above issues to make our method
efficient on Spark.

By thoroughly studying essential issues on efficiency and
stability, we release our Spark implementation Spark LIBLIN-
EAR1 for LR and L2-loss SVM as an extension of the software
LIBLINEAR [10].

This paper is organized as follows. Section II briefly
introduces Spark. The formulation of LR and linear SVM, and
their distributed training by TRON are discussed in Section
III. In Section IV, we detailedly survey and analyze important
implementation issues. Experimental results are shown in
Section VI. Section VII concludes this work. A supplementary
file including additional results is available at http://www.csie.
ntu.edu.tw/⇠cjlin/papers/spark-liblinear/supplement.pdf.

II. APACHE SPARK

Traditional MapReduce frameworks such as Hadoop [11]
have inefficient performance when conducting iterative compu-
tations because it requires disk I/O of reloading the data at each
iteration. To avoid extensive disk I/O, distributed in-memory
computing platforms become popular. Apache Spark [5] is a
general-purpose in-memory cluster-computing platform. This
platform allows users to develop applications by high-level
APIs. Spark enables the machines to cache data and interme-
diate results in memory instead of reloading them from disk at
each iteration. In order to support parallel programming, Spark
provides resilient distributed datasets and parallel operations.
This section discusses the details of these techniques.

1http://www.csie.ntu.edu.tw/⇠cjlin/libsvmtools/distributed-liblinear/
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A. Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) [12] is a
distributed file system designed for storing and manipulating
large-scale data. HDFS provides a robust and convenient file
system for Spark. It is highly fault-tolerant because of two
useful strategies. First, data replication ensures that replicas
(copies) of data are placed in several nodes. When one node
is lost, replications of data stored on other nodes can still
be accessible. Second, HDFS applies heartbeats to check the
availability of the nodes. One node is set to be the name
node and the rest are set to be data nodes. The name node
manages the namespace of HDFS and the data nodes store
data as blocks. HDFS heartbeats are periodically sent from
data nodes to the name node. When the name node does not
receive the heartbeat from a specific data node di, it marks di
as a dead node and recovers the tasks done by di.

B. Resilient Distributed Datasets

In Spark, a partition is a distributed segment of data. When
a driver program loads data into memory, a partition is a
basic loading unit for the cache manager of Spark. If there is
enough memory in the slave nodes, partitions will be cached
in memory, and otherwise in disk. In Spark, a training data
set is represented by a resilient distributed dataset (RDD) [6]
which consists of partitions. An RDD is created from HDFS
files or by transforming other RDDs.

The usage of RDDs is an important technique to realize
parallel computing not only outside but also inside a slave
node. A slave node only needs to maintain some partitions
of the training data set. Instead of handling the original
whole data set, every slave node can focus on its partitions
simultaneously. This mechanism achieves parallelism if the
number of partitions is enough. Assume the number of the
slave machines is s and the number of partitions is p. The
parallel computing can be fully enabled by specifying p > s.
Therefore, the p partitions can be operated in parallel on the
s slave machines. Users can specify the appropriate value of
p according to their applications. In fact, the Spark system
decides a pmin based on the size of the training data. If users
do not set the value of p, or the user-specified p is smaller
than pmin, the Spark system will adopt p = pmin.

Spark provides two types of parallel operations on RDDs:
transformations and actions. Transformations, including op-
erations like map and filter, create a new RDD from the
existing one. Actions, such as reduce and collect, conduct
computations on an RDD and return the result to the driver
program.

C. Lineage and Fault Tolerance of Spark

The key mechanism in Spark for supporting fault tolerance
is through read-only RDDs. If any partition is lost, the Spark
system will apply transformations on the original RDD that
creates this partition to recompute it. The transformations
operations are maintained as a lineage, which records how
RDDs are derived from other RDDs. Lineages are maintained
in the master machine as the centralized metadata. They make
the recomputation of RDDs efficient. The RDDs are made
read-only to ensure that after reconducting the operations
recorded in the lineage, we can obtain the same results.

III. LOGISTIC REGRESSION, SUPPORT VECTOR
MACHINES AND DISTRIBUTED NEWTON METHOD

To illustrate how to apply a distributed version of TRON
in solving LR and linear SVM, we begin with introducing
their optimization formulations. We then discuss a trust region
Newton method with its distributed extension.

A. Logistic Regression and Linear SVM

Given a set of training label-instance pairs {(xi, yi)}li=1,
xi 2 Rn, yi 2 {�1, 1}, 8i, most linear classification models
consider the following optimization problem.

min

w
f(w) ⌘ 1

2

w

T
w + C

Xl

i=1
⇠(w;xi, yi), (1)

where ⇠(w;xi, yi) is a loss function and C > 0 is a user-
specified parameter. Commonly used loss functions include

⇠(w;xi, yi) ⌘

8
><

>:

max(0, 1� yiw
T
xi), (2)

max(0, 1� yiw
T
xi)

2, and (3)
log

�
1 + exp

�
�yiwT

xi

��
. (4)

Problem (1) is referred as L1-loss and L2-loss SVM if (2) and
(3) is used, respectively. When (4) is considered, (1) becomes
LR. It is known that (3) and (4) are differentiable while (2) is
not and is thus more difficult to optimize. Therefore, we focus
on solving LR and L2-loss SVM in the rest of the paper.

B. A Trust Region Newton Method

Truncated Newton methods have been an effective method
to solve (1) and other optimization problems. Here we consider
a special version called trust region Newton methods (TRON).
TRON has been successfully applied in [13] to solve LR and
linear SVM under the single-core setting. We briefly introduce
TRON in the rest of this sub-section.

At the t-th iteration, given the current iterate w

t, TRON
obtains the truncated Newton step by approximately solving

min

d
qt(d), subject to kdk  �t, (5)

where �t > 0 is the current size of the trust region, and

qt(d) ⌘ rf(wt
)

T
d+

1

2

d

Tr2f(wt
)d (6)

is the second-order Taylor approximation of f(wt
+ d) �

f(wt
). Because r2f(w) is too large to be formed and stored,

a Hessian-free approach of applying CG (Conjugate Gradient)
iterations is used to approximately solve (5). At each CG
iteration we only need to obtain the Hessian-vector product
r2f(w)v with some vector v 2 Rn generated by the CG
procedure. The details of the CG method is described in
Algorithm 1. For LR,

r2f(w) = I + CXTDX,

where I is the identity matrix,

X = [x1, . . . ,xl]
T

is the data matrix, and D is a diagonal matrix with

Di,i =
exp(�yiwT

xi)

(1 + exp(�yiwT
xi))

2
.
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Without explicit forming r2f(w), each CG iteration calcu-
lates

r2f(w)v = v + CXT
(D (Xv)) . (7)

Notice that when L2-loss SVM is considered, since it is not
twice-differentiable, we follow [13], [14] to use a generalized
Hessian when computing the Hessian-vector products.

After (5) is solved, TRON adjusts the trust region and the
iterate according to how good the approximation is. Note that
at each TRON iteration, the function value and the gradient are
evaluated only once, while it is clear from Algorithm 1 that
we need to compute the Hessian-vector products for several
different vectors in the iterative CG procedure until (5) is
solved. More details can be found in [13].

Algorithm 1 CG procedure for approximately solving (5)
1: Given ⇠t < 1,�t > 0. Let ¯

d

0
= 0, r0 = �rf(wt

), and
s

0
= r

0.
2: For i = 0, 1, . . . (inner iterations)
3: If krik  ⇠tkrf(wt

)k, output dt
=

¯

d

i and stop.
4: Compute

u

i
= r2f(wt

)s

i. (8)

5: ↵i = krik2/((si)Tui
).

6: ¯

d

i+1
=

¯

d

i
+ ↵is

i.
7: If k ¯di+1k � �t, compute ⌧ such that k ¯di

+⌧sik = �t,
then output the vector dt

=

¯

d

i
+ ⌧si and stop.

8: r

i+1
= r

i � ↵iu
i.

9: �i = kri+1k2/krik2.
10: s

i+1
= r

i+1
+ �is

i.

C. Distributed Algorithm

From the discussion in the last section, the computational
bottleneck of TRON is (8), which is the product between the
Hessian matrix r2f(wt

) and the vector s

i. This operation
can possibly be parallelized in a distributed environment as
parallel vector products. Based on this observation, we discuss
a method of running TRON distributedly. To simplify the
discussion, we only demonstrate the algorithm for solving LR.

We first partition the data matrix X and the labels Y into
disjoint p parts.

X = [X1, . . . , Xp]
T ,

Y = diag(y1, . . . , yl) =

"
Y1

. . .
Yp

#
,

where diag(·) represents a diagonal matrix. For easier descrip-
tion, we introduce the following component-wise function

�(v) ⌘ [1 + exp(�v1), . . . , 1 + exp(�vn)]T ,

and the operations on this function are also component-wise.
We then reformulate the function, the gradient and the Hessian-
vector products of (1) as follows.

f(w) =

1

2

w

T
w + C

Xp

k=1
fk(w), (9)

rf(w) = w + C
Xp

k=1
rfk(w), (10)

r2f(w)v = v + C
Xp

k=1
r2fk(w)v, (11)

where

fk(w) ⌘ e

T
k log (� (YkXkw)) , (12)

rfk(w) ⌘ (YkXk)
T
⇣
� (YkXkw)

�1 � ek

⌘
, (13)

r2fk(w)v ⌘ XT
k (Dk (Xkv)) , (14)

Dk ⌘ diag
⇣
(� (YkXkw)� ek) /� (YkXkw)

2
⌘
,

and ek is the vector of ones. Note that log(·) is used as a
component-wise function in (12). The functions fk,rfk and
r2fk are the map functions operating on the k-th partition.
We can observe that for computing (12)-(14), only the data
partition Xk is needed in computing. Therefore, the computa-
tion can be done in parallel, with the partitions being stored
distributedly. After the map functions are computed, we need
to reduce the results to the machine performing the TRON
algorithm in order to obtain the summation over all partitions.
This algorithm requires two phrases of communications. The
first one is shipping w and v to all slave machines. The second
one is reducing the results of those map functions to the master
machine. The details are described in Algorithm 2. Note that
except the computation of (8), Algorithm 1 is conducted on
the master machine and hence not parallelized. However, since
the cost of each CG step excluding the calculation of (8) is
only O(n), the CG procedure will not become a bottleneck
even we use many nodes.

Algorithm 2 A distributed TRON algorithm for LR and SVM
1: Given w

0,�0, ⌘, ✏.
2: For t = 0, 1, . . .
3: The master ships w

t to every slave.
4: Slaves compute fk(w

t
) and rfk(wt

) and reduce them
to the master.

5: If krf(wt
)k < ✏, stop.

6: Find d

t by solving (5) using Algorithm 1.
7: Compute ⇢t =

f(wt+dt)�f(wt)
qt(dt) .

8: Update w

t to w

t+1 according to

w

t+1
=

⇢
w

t
+ d

t if ⇢t > ⌘,

w

t if ⇢t  ⌘.

9: Obtain �t+1 by rules in [13].

IV. IMPLEMENTATION DESIGN

In this section, we study implementation issues for our
software. We name our distributed TRON implementation
Spark LIBLINEAR because algorithmically it is an extension
of the TRON implementation in the software LIBLINEAR
[10]. Because Spark is implemented in Scala, we use the same
language. Scala [15] is a functional programming language
that runs on the Java platform. Furthermore, Scala programs
are compiled to JVM bytecodes. The implementation of Spark
LIBLINEAR involves complicated design issues resulting from
Java, Scala and Spark. For example, in contrast to tradi-
tional languages like C and C++, similar expressions in Scala
may easily behave differently. It is hence easy to introduce
overheads in developing Scala programs. A careful design is
necessary. We analyze the following different implementation
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issues for efficient computation, communication and memory
usage.

• Programming language:
� Loop structure
� Data encapsulation

• Operations on RDD:
� Using mapPartitions rather than map
� Caching intermediate information or not

• Communication:
� Using broadcast variables
� The cost of the reduce function

The first two issues are related to Java and Scala, while
the rest four are related to Spark. After the discussion in this
section, we conduct empirical comparisons in Section VI.

A. Loop Structure

From (12)-(14), clearly the computational bottleneck at
each node is on the products between the data matrix Xk (or
XT

k ) and a vector v. To compute this matrix-vector product,
a loop to conduct inner products between all xi 2 Xk

and v is executed. This loop, executed many times, is the
main computation in our algorithm. Although a for loop is
the most straightforward way to implement an inner product,
unfortunately, it is known that in Scala, a for loop may be
slower than a while loop.2 To study this issue, we discuss
three methods to implement the inner product: for-generator,
for-range and while.

Building a for-generator involves two important concepts:
collection and generator. A collection is a container which
stores data variables of the same type. It allows convenient
batch operations. In Scala, a syntax such as “element  
collection” is called a generator for iterating through all
elements of a collection. The approach for-generator involves
a generator to create an iterator for going through elements of
a collection. This method is notated by

for(element  collection) { ... }

Another way to have a for loop is by going through a range
of indices, where the range is created by a syntax like “3 to
18.” This method, denoted as for-range, can be implemented
by

for(i  0 to collection.length) { ... }

Finally, we consider the approach of using a while loop to
implement the inner product:

i = 0;
while(condition) {

...
i = i + 1;

}

From the viewpoint of writing a program, a for rather than
a while loop should be used. However, the performance of a
for loop is not as efficient as a while loop. Actually, there is
only the syntax of “for expression” instead of “for loop” in

2https://issues.scala-lang.org/browse/SI-1338

Scala. It turns out that the Scala compiler translates the for
expression into a combination of higher-order operations. For
example [16], the for-generator approach is translated into:

collection.foreach { case element => operations }

The translation comes with overheads and the combination be-
comes complicated when more operations are applied. Further,
the optimization of a for expression has not been a focus in
Scala development because this expression is too imperative
to consist with the functional programming principle [15]. In
contrast, a while loop is a loop rather than an expression, so it
acquires relatively efficient optimization. Therefore, we choose
the while loop to implement our software.

B. Data Encapsulation

We follow LIBLINEAR [10] to represent data as a sparse
matrix, where only non-zero entries are stored. This strategy is
important to handle large-scale data. For example, for a given
5-dimensional feature vector (2, 0, 0, 8, 0), only two index-
value pairs of non-zero entries are stored.

We investigate how to store the index-value information
such as “1:2” and “4:8” in memory. The discussion is based
on two encapsulation implementations: the Class approach
(CA) and the Array approach (AA).

CA encapsulates a pair of index and feature value into a
class, and maintains an array of class objects for each instance:

index1
value1

index2
value2

index3
value3

index4
value4

index5
value5

. . .

In contrast, AA directly uses two arrays to store indices
and feature values of an instance:

index1 index2 index3 index4 index5 . . .

value1 value2 value3 value4 value5 . . .

One advantage of CA is the readability of source code.
However, this design causes overheads on both memory usage
and accessing time. For memory usage, CA requires additional
memory than AA because each class object maintains an object
header in memory. Note that the number of object headers used
is proportional to the number of non-zero values in the training
data. For the accessing time, AA is faster because it directly
accesses indices and values, while the CPU cache must access
the pointers of class objects first if CA is applied.

C. Using mapPartitions Rather Than map

The second term of the Hessian-vector product (7) can be
represented as the following form.

Xl

i=1
xiDi,ix

T
i v =

Xl

i=1
a(xi, yi,w,v)xi,

where a(xi, yi,w,v) = Di,ix
T
i v. Then map and reduce

operations can be directly applied; see Algorithm 3. However,
considerable overheads occur in the map operations because
for each instance xi, an intermediate vector a(xi, yi,w,v)xi

is created.

In addition to the above-mentioned overheads, the reduce
function in Algorithm 3 involves complicated computation.
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Algorithm 3 map implementation
1: data.map(new Function() {
2: call(x, y) { return a(x, y, w, v)x }
3: }).reduce(new Function() {
4: call(a, b) { return a+ b }
5: })

Algorithm 4 mapPartitions implementation
1: data.mapPartitions(new Function() {
2: call(partition) {
3: partitionHv = new DenseVector(n)
4: for each (x, y) in partition
5: partitionHv += a(x, y, w, v)x
6: }
7: }).reduce(new Function() {
8: call(a, b) { return a+ b }
9: })

Because we consider sparse storage, intermediate vectors may
also be represented as sparse vectors. Consequently, the re-
duce function involves additions of sparse vectors. When
adding two sparse vectors, the vector sum easily contains more
non-zero values, so the creation of longer index and value
arrays is inevitable. Because numerous temporary arrays may
be created in the reduce function, the cost is not negligible.

To avoid the overheads and the complicated additions of
sparse vectors, we consider the mapPartitions operation in
Spark; see Algorithm 4. Spark provides mapPartitions to
apply a function on each partition of an RDD. In Algorithm
4, all instances in a partition share only one intermediate vec-
tor called partitionHv, which saves

P
i2Xk

a(xi, yi,w,v)xi,
where Xk is the k-th part of data matrix X . This setting
ensures that computing a Hessian-vector product involves only
p intermediate vectors. Thus, the overheads of using map-
Partitions is less than that of using map with l intermediate
vectors. Moreover, additions of sparse vectors are replaced by
simply accumulating sparse vectors on a dense vector. The
dense vector contains all entries of the features, so the values
in sparse vectors can be directly added to the dense vector.
Thus no creation of new index and value arrays is involved.
One may question that a dense vector requires more memory
than a sparse vector, but this disadvantage is negligible unless
only few non-zero elements are in the dense vector. In fact,
the partitionHv vectors tend to be dense because gradients and
Hessian-vector products are usually dense even when the data
is sparse. Hence, The memory usage of dense vectors is not
an issue.

We note that the technique of using mapPartitions can
also be applied to compute the gradient.

D. Caching Intermediate Information or not

The calculations of (12)-(14) all involve the vector
�(YkXkw).3 Instinctively, if this vector is cached and
shared between different operations, the training procedure

3 For L2-loss SVM, the vector to be considered is YkXkw.

can be more efficient. In fact, the single-machine package
LIBLINEAR uses this strategy in their implementation of
TRON. Because our data is represented by an RDD, one
straightforward thinking of implementing this strategy is to
save the vector in this data RDD. However, because RDDs are
read-only, we should not store variables that would change
with iterations in the data RDD. One may then want to
create a new RDD containing only �(YkXkw) at each Newton
iteration to share the cached information between operations.
Nevertheless, this created RDD is useless. Spark does not allow
any single operation to gather information from two different
RDDs and run a user-specified function such as (12), (13) or
(14). Therefore, we must create one new RDD per iteration
to store both the training data and the information to be
cached. The new RDDs are transformed from the original data
RDD. Unfortunately, this approach incurs severe overheads
in copying the training data from the original RDD to the
new one. Furthermore, the dependency of the new RDDs on
the original data RDD lengthens the lineage. When a slave
machine fails during training, Spark traces back through the
lineage to recover the task. The longer lineage may cause
longer time of recovery.

Another possibility of caching �(YKXkw) is to store them
in the master machine after the function (12) is computed,
and then ship them back to the slaves in computing (13)
and (14). This approach requires additional communication
of collecting and distributing �(YkXkw) in the cluster. The
cost of this communication is proportional to O(l), so this
approach may be feasible when l is not too large. However,
when the data size is large, this additional communication cost
may counterbalance the computation time saved by caching
�(YkXkw).

Based on the above discussion, we decide not to cache
�(YkXkw) because recomputing them is more cost-effective.
In the study of [9] with an implementation based on MPI (see
Section V-B), this issue does not occur. Therefore, this example
demonstrates that specific properties of a parallel programming
framework may strongly affect the implementation.

E. Using Broadcast Variables

In Algorithm 2, communication occurs at two places. The
first one is sending w and v from the master machine to the
slave machines, and the second one is reducing the results of
(12)-(14) to the master machine. We discuss the first case here,
and postpone the second one to Section IV-F.

In Spark, when an RDD is split into partitions, one single
operation on this RDD is divided into tasks working on
different partitions. Take Algorithm 2 as an example. The data
matrix X forms an RDD, and it is split into X1, . . . , Xp. The
task of computing (9) is divided into computing fk(w) on the
partition Xk in (12) for k = 1, . . . , p. In this algorithm, when
an operation of computing (9), (10) or (11) is conducted, by
default, Spark sends a copy of w and v to each partition. As
mentioned in Section II-B, the number of partitions p is set to
be larger than the number of slaves s. Under this setting, many
redundant communications occur because we just need to send
a copy to each slave machine but not each partition. When the
vector dimension n is large, these redundant communications
may incur high cost. Besides, sending w once per TRON
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iteration instead of sending it for each operation of computing
(9), (10) or (11) is a more efficient strategy. In such a
case where each partition shares the same information from
the master, it is recommended to use broadcast variables.4
Broadcast variables are read-only shared variables that are
cached in each slave machine and can be accessed by all the
partitions of the RDD running on this slave. Because p > s,
broadcast variables may effectively reduce the communication
cost.

It is clear from Algorithm 2 that at the same iteration
of TRON, the functions (12)-(14) share the same w. Thus,
we only need to broadcast w once per TRON iteration.5
Then slaves can used the cached broadcast variable w for
computing (12)-(14). Assume there are ci times of CG involved
in iteration i. By using broadcast variables, we can avoid the
ci times of sending the same w to the slaves during the CG
procedure.

F. The Cost of the reduce Function

We continue to discuss the second place incurring com-
munications. Because (12) is a scalar and the communication
cost of reducing it is negligible, we focus on reducing the
vectors (13) and (14) of size n from slaves to the master. In the
reduce operation, the slaves send the output of each partition
to the master separately. Thus in Algorithm 4, totally p vectors
with size n are sent to the master. If we locally combine
the outputs of partitions on the same slave machine before
sending them to the master, only s vectors are communicated.
We adopt the coalesce function in our implementation to
approach this goal. The coalesce function returns a new
RDD with pc partitions, where pc < p is user-specified.
The new partition is formed by merging the original RDD
partitions with consideration of locality. In our implementation,
we execute the coalesce function with pc = s between
the mapPartitions and the reduce functions. If the locality
of partitions is fully utilized in the coalesce function, the
partitions of the original RDD on the same slave machine
are merged into one partition. Consequently, the input of the
reduce function has only s partitions, and hence the number
of vectors sent from slaves to the master is decreased from p
to s.

V. RELATED WORKS

Among the existing tools for distributed training of LR,
we discuss two publicly available ones that will be used in
our experimental comparison in Section VI.

A. LR Solver in MLlib

MLlib6 is a machine learning library implemented in
Apache Spark. It provides a stochastic gradient (SG) method
for LR. In this SG implementation, at the t-th iteration and
given the current iterate w

t, the model is updated by

w

t+1
= w

t � ⌘0p
t
rfIt(wt

),

4http://spark.apache.org/docs/latest/programming-guide.html
5We cache w

t
+d used in line 7 as the new broadcast variables w

t+1 for
the next iteration. Thus in general we broadcast w once per iteration unless
rhot  ⌘. In our experiments, the case ⇢t  ⌘ occurs very seldom.

6http://spark.apache.org/docs/1.0.0/mllib-guide.html

where ⌘0 > 0 is the initial learning rate specified by the user,
It is a randomly drawn subset of the training data, and

fIt(w
t
) =

1

2

kwtk2 + C
X

i2It
log(1 + exp(�yiwT

xi)).
7

The computation of rfIt(wt
) is similar to that of (10), except

that Xk and Yk in (13) are replaced by their intersection
with It. Their implementation also follows the master-slave
structure. Therefore, communications similar to our method are
also required: sending w to slaves and gathering the gradient
from slaves. Hence, the communication problems described in
Section IV-E and IV-F also occur in MLlib but have not been
solved.

B. MPI LIBLINEAR

MPI LIBLINEAR [9] is an MPI implementation of a
distributed TRON algorithm that is similar to the one discussed
in Section III-C. We investigate some important differences
between MPI LIBLINEAR and our Spark LIBLINEAR.

First, MPI LIBLINEAR is implemented in C++ while
Spark LIBLINEAR is in Scala. The C++ implementation is
simpler because issues such as the difference between for and
while loops mentioned in Section IV-A do not exist. Second,
because MPI does not involve high-level APIs such as map
and mapPartitions in Spark, the issue discussed in Section
IV-C also does not exist in MPI LIBLINEAR. Third, Spark
LIBLINEAR can recover from failure of machines. The prin-
ciple of read-only RDDs is essential to support fault tolerance.
Thus, the discussion on caching �(YkXkw) in Section IV-D is
an important issue for efficiency. In contrast, MPI LIBLINEAR
does not support fault tolerance, so the read-only principle is
not considered in MPI LIBLINEAR. Finally, there is no master
machine in MPI LIBLINEAR. It only has a program to activate
the distributed tasks. Machines directly share all information
with each other by all-reduce operations. In contrast, Spark
only supports the master-slave structure. As a consequence,
MPI LIBLINEAR only requires one communication (slave to
the other slaves) while Spark LIBLINEAR needs two (master
to slaves in Section IV-E and slaves to master in Section IV-F)
each time computing (9), (10) or (11).

VI. EXPERIMENTS

In this section, first we experimentally investigate imple-
mentation issues examined in Section IV. We then show the
scalability of Spark LIBLINEAR. Finally, we compare the
performance between MLlib, MPI LIBLINEAR and Spark
LIBLINEAR. We consider some real-world data sets listed in
Table I. All data sets except yahoo-japan and yahoo-korea
are available at the LIBSVM data set page.8 Because of space
limitation, we present results of only LR here and leave the
results of L2-loss SVM in the supplementary materials.

7In the implementation of MLlib, the following objective function is used.

˜

f(w) =

�

2

w

T
w +

1

l

Xl

i=1
log(1 + exp(�yiw

T
xi)).

We then use � = 1/Cl and multiply ˜

f by Cl to make the function equal to
(1) with the logistic loss.

8http://www.csie.ntu.edu.tw/⇠cjlin/libsvmtools/datasets/. Note that we use
the unigram version of webspam in our experiments.
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TABLE I. DATA INFORMATION: DENSITY IS THE AVERAGE RATIO OF
NON-ZERO FEATURES PER INSTANCE.

Data set #instances #features density #nonzeros ps pe

ijcnn 49,990 22 59.09% 649,870 1
real-sim 72,309 20,958 0.25% 3,709,083 2
rcv1 20,242 47,236 0.16% 1,498,952 1
news20 19,996 1,355,191 0.03% 9,097,916 2
covtype 581,012 54 22.00% 6,901,775 32
webspam 350,000 254 33.52% 29,796,333 6 32
epsilon 400,000 2,000 100.00% 800,000,000 183
rcv1t 677,399 47,236 0.16% 49,556,258 32
yahoo-japan 176,203 832,026 0.02% 23,506,415 5 32
yahoo-korea 460,554 3,052,939 0.01% 156,436,656 34

Four smaller and two larger sets are chosen for the ex-
periments of loops and encapsulation in Sections VI-A and
VI-B. These two issues are strongly related to Scala, so we
run experiments only on one and two nodes to reduce the
effect of communication. To fit data in the memory of one or
two nodes, the training data sets must be small. Larger sets
are used for other experiments to check the efficiency on real
distributed environments.

The number of partitions used in our experiments is also
listed in Table I. The value ps is used for the experiments
of loops and encapsulation, and pe is applied for the rest.
In the experiments of loops and encapsulation, we adopt the
Spark-calculated pmin as ps to reduce the effect of combining
partitions. As mentioned in Section II-B, pmin is a constant
for a given data set. For other experiments, pmin is probably
not suitable because when it is not large enough, the parallel
function of Spark will not be enabled. One may want to
choose a large p to exploit parallelism. However, a too large p
leads to extra overheads of maintaining and handling numerous
partitions. Eventually, to check the performance of 16 nodes
with multiple cores, we choose pe = max(32, pmin). This
setting ensures that there are at least two partitions for each
slave to handle while p will not be too large.

We evaluate the performance by the relative difference to
the optimal function value:

|f(w)� f(w⇤
)

f(w⇤
)

|.

The optimal f(w⇤
) is obtained approximately by running

optimization methods with a very tight stopping condition. All
experiments use C = 1 and are conducted on a cluster where
each machine has 16 GB of RAM and 8 virtual CPUs.

A. Different Loop Structures

The performance of different loop implementations is eval-
uated in Figure 1. The while loop is significantly more efficient
in almost all cases. Therefore, while loops are adopted in our
final implementation and all subsequent experiments. Notice
that if two nodes are used, results in Figures 1(g)-1(l) show that
the difference between for and while loop reduces for small-
scale data sets. The reason is that when data is split between
two nodes, each node requires conducting fewer loops.

B. Encapsulation

We now check the encapsulation issue discussed in Section
IV-B. The approach CA encapsulates the index and value of
each feature into a class, while the other approach AA directly

One node
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Fig. 1. Loop implementation comparison: running time (in seconds) versus
the relative objective value difference. We run LR with C = 1. Top: using
one node; bottom: using two nodes.

uses two arrays to store the indices and values separately.
Results of using one and two nodes are in Figure 2. One can
observe that AA is more efficient when one node is used, and is
faster or equally good when two nodes are used. This confirms
our conjecture in Section IV-B that AA has less overheads
than CA. Therefore, we apply the AA encapsulation in our
implementation.

C. mapPartitions and map

In Figure 3, we show the comparison between mapParti-
tions and map using 16 nodes. We mentioned in Section IV-C
that the communication cost of the two implementations are
basically the same, so the longer running time of map implies
its higher computation cost. This result is consistent with the
analysis in Section IV-C. As the consequence of its better
efficiency, we apply mapPartitions in Spark LIBLINEAR.

D. Broadcast Variables and the coalesce Function

The implementations with and without broadcast variables
and the coalesce function are compared in Figure 4. The re-
sults indicate that using broadcast variables and the coalesce
function significantly reduces the running time on data sets
with higher feature dimensions. The observation validates our
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Fig. 2. Encapsulation implementations: We present running time (in seconds)
versus the relative objective value difference. Top: using one node; bottom:
using two nodes.

discussion in Sections IV-E and IV-F, which indicates high
communication cost for data with many features. However, for
data with few features like covtype and webspam, adopting
broadcast variables slightly degrades the efficiency because the
communication cost is low and broadcast variables introduce
some overheads. Regarding the coalesce function, it is bene-
ficial for all data sets.

E. Analysis on Scalability

To examine the relation between the training speed and the
number of nodes used, we vary the number of nodes from 2 to
4, 8 and 16 to compare the training time. The results are shown
as N-2, N-4, N-8 and N-16 in Figure 5. To check the speed-up
of using different number of nodes, we run the experiments
with one virtual CPU per node. N-2 does not appear in Figure
5(f) because the epsilon data set is too large to fit in the
memory of two nodes. We observe that the performances of
covtype, webspam and epsilon improve when the node size
increases.

For data sets yahoo-japan, yahoo-korea and rcv1 t re-
spectively shown in Figures 5(c), 5(d),and 5(e), as the number
of nodes increases (i.e., 4 to 8 nodes, 8 to 16 nodes and 8
to 16 nodes), the training efficiency degrades. The reason is
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(e) rcv1t
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Fig. 3. map and mapPartitions: We present running time (in seconds, log
scaled) versus the relative objective value difference. We run LR with C = 1

on 16 nodes.
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(e) rcv1t
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(f) epsilon

Fig. 4. Broadcast variables and coalesce: We present running time (in
seconds) versus the relative objective value difference. We run LR with C = 1

on 16 nodes. Note that broadcast-cl represents the implementation with both
broadcast variables and the coalesce function.

that these data sets possess higher feature dimension, so the
communication cost grows faster when the number of nodes
increases. In Section VI-G, we observe that MPI LIBLINEAR
also encounters this problem. The communication bottleneck
may be improved by the feature-wise distributed approach
discussed in [9]. The feasibility of applying this approach on
Spark will be investigated in the near future.

F. Comparing with MLlib

After studying implementation issues discussed in IV, we
compare Spark LIBLINEAR with some existing packages.
We first examine the performance of Spark LIBLINEAR with
the LR solver in MLlib. Note that 16 nodes are used in this
experiment. We follow the default setting of MLlib to set It
as the whole training data, so the SG method becomes a
gradient descent (GD) method in our experiments. We present
the result with the fastest function value decrease among using
different initial learning rates ⌘0 from {10�5, 10�4, . . . , 105}.
The results are shown in Figure 6. We can see that the
convergence of MLlib is rather slow in comparison with Spark
LIBLINEAR. The reason is that the GD method is known to
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(e) rcv1t
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Fig. 5. Scalability: We present running time (in seconds) versus the relative
objective value difference. We run LR with C = 1.
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Fig. 6. Comparison with MLlib: We present running time (in seconds, log
scale) versus the relative objective value difference. We run LR with C = 1

on 16 nodes.

have slow convergence, while TRON enjoys fast quadratic
local convergence for LR [13]. Note that as MLlib requires
more iterations to converge, the communication cost is also
higher. This then exacerbates its inefficiency.

G. Comparison of Spark LIBLINEAR and MPI LIBLINEAR

We continue to compare the performance of Spark LIB-
LINEAR and MPI LIBLINEAR. In Figure 7, we show the
results of using 2, 4, and 8 nodes for each data set. We do
not present results on epsilon with two nodes because of the
memory capacity issue mentioned in Section VI-E. Note that
Spark LIBLINEAR-m denotes using Spark LIBLINEAR with
multiple cores on each node, and the other two approaches
apply one core per node. Spark realizes multi-core parallelism
by handling multiple partitions in the same node simultane-
ously. To fully exploit parallelism, the number of cores used
on each node should not exceed p/s. Therefore we use four
cores per node for the multi-core approach. In contrast, there
is no multi-core parallelization mechanism in MPI, so we must
modify MPI LIBLINEAR with additional libraries to activate
multi-core computation. We therefore do not consider MPI
LIBLINEAR with multiple cores in this experiment.

For different settings of Spark LIBLINEAR, we observe
that using multiple cores is not beneficial on yahoo-japan and

yahoo-korea. A careful profiling shows that the bottleneck
of the training time on these data sets is communication and
using more cores does not reduce this cost. MPI LIBLINEAR
also suffers from the increase of training time for larger
clusters in the high dimensional data yahoo-japan. See also
the discussion in the end of Section VI-E.

In the comparison between MPI LIBLINEAR and Spark
LIBLINEAR with one core, MPI LIBLINEAR is faster in
almost all cases. The reason is that to support fault toler-
ance, Spark LIBLINEAR incurs additional cost in maintaining
RDDs. Also, the different programming languages used in the
two packages affect their efficiency. The only exception is the
data set epsilon. In Figure 7(f), one-core Spark LIBLINEAR
is competitive with MPI LIBLINEAR, while multi-core Spark
LIBLINEAR is significantly faster than the other two ap-
proaches. A possible reason is that in the training of the dense
data epsilon, most of the training time is spent on the matrix-
vector products, so other factors become less significant and
using more cores is effectively accelerates this computation.
We also notice that when only two nodes are used and therefore
the communication cost is low, the training time of multi-core
Spark LIBLINEAR is similar to that of MPI LIBLINEAR in
Figures 7(b) and 7(e). Although MPI LIBLINEAR is generally
faster than Spark LIBLINEAR, Spark LIBLINEAR has the
important advantage of supporting fault tolerance.

VII. DISCUSSIONS AND CONCLUSIONS

In this work, we consider a distributed TRON algorithm on
Spark for training LR and linear SVM with large-scale data.
Many important implementation issues affecting the training
time are thoroughly studied with careful empirical exami-
nations. Our implementation is efficient with fault tolerance
provided by Spark. It is possible to use hybrid methods that
generate a better initial w for TRON such as the algorithm
considered in [17] to reduce the training time. We leave it
as an interesting future work to examine the performance
of such approaches. In the experiments, we observe that the
communication cost becomes the training bottleneck when the
feature dimension is huge. We plan to investigate feature-wise
distributed algorithms on Spark to tackle this problem in the
near future, as it is shown in [9] that such an approach may
be more efficient in training high dimensional data. Based on
this research, we release an efficient and easy to use tool for
the Spark community.
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Fig. 7. Comparison with MPI LIBLINEAR: We present running time (in
seconds) versus the relative objective value difference. We run LR with C = 1.
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