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Abstract—Data parallel architectures, such as General Pur-
pose Graphics Units (GPGPUs) have seen a tremendous rise
in their application for High End Computing. However, data
movement in and out of GPGPUs remains the biggest hurdle
to overall performance and programmer productivity. Real
scientific applications utilize multi-dimensional data. Data in
higher dimensions may not be contiguous in memory. In order
to improve programmer productivity and to enable commu-
nication libraries to optimize non-contiguous data communi-
cation, the MPI interface provides MPI datatypes. Currently,
state of the art MPI libraries do not provide native datatype
support for data that resides in GPU memory. The management
of non-contiguous GPU data is a source of productivity and
performance loss, because GPU application developers have to
manually move the data out of and in to GPUs.
In this paper, we present our design for enabling high-
performance communication support between GPUs for non-
contiguous datatypes. We describe our innovative approach to
improve performance by “offloading” datatype packing and
unpacking on to a GPU device, and “pipelining” all data
transfer stages between two GPUs. Our design is integrated into
the popular MVAPICH2 MPI library for InfiniBand, iWARP
and RoCE clusters. We perform a detailed evaluation of our
design on a GPU cluster with the latest NVIDIA Fermi GPU
adapters. The evaluation reveals that the proposed designs can
achieve up to 88% latency improvement for vector datatype at
4 MB size with micro benchmarks. For Stencil2D application
from the SHOC benchmark suite, our design can simplify the
data communication in its main loop, reducing the lines of code
by 36%. Further, our method can improve the performance of
Stencil2D by up to 42% for single precision data set, and 39%
for double precision data set. To the best of our knowledge,
this is the first such design, implementation and evaluation of
non-contiguous MPI data communication for GPU clusters.

I. INTRODUCTION

We have witnessed a dramatic increase of data parallel

architectures, such as Graphics Processing Units (GPUs) in

the field of High End Computing (HEC). Three of the five

top systems in the June, 2011 Top500 list [1] leverage GPU

technology to gain excellent performance. The Compute

Unified Device Architecture (CUDA) is one of the most

popular programming models for NVIDIA GPUs. CUDA

provides methods to create computation functions on GPUs,

move data between CPU and GPU and synchronize threads

on GPU. Typically, GPUs are connected as peripheral de-

vices on PCI Express. Even though PCI Express is fast, (x16

PCIe 2.0 provides 8 GB/s bandwidth in each direction) it is

still slow compared to the compute capabilities of GPUs.

One of the main factors limiting GPU enabled applications

is the latency of data movement between CPU and GPU

memories.

Scientific applications often manipulate multi-dimensional

data. The most commonly used finite element methods

employ either 2-D or 3-D data. Dealing with parts of multi-

dimensional structures data is more complex because of

their non-contiguous nature. In order to simplify the task

of sending and receiving non-contiguous data, the Message

Passing Interface (MPI), which is one of the most popular

parallel programming models, provides datatype support.

Using this, multi-dimensional data can be described as a

datatype and can be directly used in MPI send, receive

and collective operations. The MPI implementation can

internally transform non-contiguous data into contiguous

data and transfer it over the network. Advanced MPI li-

braries may also use specialized non-contiguous data transfer

support from network adapters to optimize communication

for non-contiguous MPI datatypes. Over time, developers of

scientific applications have come to rely on the MPI datatype

features for writing real scientific applications.

A. Motivation

As GPUs are increasingly being used for general purpose

computation, more and more complex real-world scientific

applications that are written in MPI are being modified to

tap into GPU performance benefits. Since many of these

applications involve multi-dimensional data, programmers

have to deal with moving these structures between GPU and

main memory. Multi-dimensional data is contiguous only

in one dimension, and non-contiguous in other dimensions.

An example is, the 2D stencil where the north and south

boundaries are contiguous, and the east and west boundaries

are non-contiguous in a row major organization. Currently,

the following methods can be used to move non-contiguous

two-dimensional data from/into GPU memory. They are

shown in Figure 1.
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(a) Use cudaMemcpy2D to instruct GPU device to trans-

fer data from GPU to Host memory. The resulting data

in host memory is also non-contiguous. This is shown

Figure 1(a).

(b) Use cudaMemcpy2D directly to transfer non-

contiguous data from GPU to Host, where the resulting

data is contiguous. This is shown in Figure 1(b).

(c) Use cudaMemcpy2D to flatten the two-dimensional

data into contiguous region in GPU device memory and

then subsequently use another cudaMemcpy to bring

the data into host memory. This is shown in Figure 1(c).

The optimal choice of these options is not immediately

obvious. Which one should the programmer follow? What

are the performance advantages of each option over the

other? In Section IV-A, we provide a detailed performance

analysis of these choices. For a non-contiguous vector of size

4 KB, the cost of option (a) is 200 μs on a Tesla 2050 GPU.

The cost for option (b) is 281 μs and the cost for option (c)

is only 35 μs. There is a factor of eight difference between

options (b) and (c).

GPU device memory CPU host memory

(a) No pack

(b) Pack by GPU
into host 

(c) Pack by GPU
inside device

Figure 1. Data packing options for GPU based systems

It is clear that the programming difficulty of dealing

with non-contiguous data coupled with the wide perfor-

mance differences between the design choices will pose a

serious challenge to programming these GPUs effectively

for scientific parallel applications. This provides a strong

motivation for supporting non-contiguous MPI datatypes to

transparently operate on data in the GPU. Not only do

MPI datatypes provide ease of programming, but they also

automatically provide the performance of an optimized MPI

library to the application without exposing low-level details

to the programmer.

B. Contributions

This paper makes several important contributions. They

are as follows:

1) Our work enables high-performance GPU to GPU

communication for non-contiguous data. MPI datatype

support significantly reduces programmer effort in

communicating data between GPUs.

2) Our work partially offloads datatype processing from

host CPU to GPU. Using this offloading mechanism,

non-contiguous buffers can be packed and unpacked

more efficiently than existing CPU based methods.

3) Our innovative protocol sub-divides data transfer into

multiple stages and applies pipelining to get high

performance.

4) We demonstrate improvements in performance and

ease of programming with established GPU bench-

marks for parallel computing, like SHOC [2].

To the best of our knowledge, this is the first research

paper that describes a high-performance approach towards

non-contiguous datatype communication between GPUs.

The design proposed in this paper has been integrated

into MVAPICH2. MVAPICH2 natively supports direct GPU

to GPU communication using NVIDIA CUDA 4.0. In a

previous paper [3], the design of GPU support in MVA-

PICH2 was discussed. However, the previous design only

considered contiguous data communication. In this paper,

we design and implement the high-performance support for

non-contiguous MPI datatype communication. Evaluation

reveals that the proposed extensions can achieve up to 88%

improvement in latency for vector data of 4 MB. For the

Stencil2D application benchmark, our design can simplify

the data communication in its main loop, reducing the lines

of code by 36%. Moreover, with our method, performance

of Stencil2D can be improved by up to 42% and 39% for

single precision and double precision data sets, respectively.

The rest of the paper is organized as follows. In Section II

we provide the necessary background about the topics dis-

cussed in this paper. In Section III we distinguish our work

from existing research in this area. In Section IV we describe

our design in detail. In Section V we present detailed

evaluation of the proposed designs. The paper concludes in

Section VI.

II. BACKGROUND

In this section, we provide the appropriate background

for this paper. We will discuss the GPU architecture and the

support for GPU-to-GPU communication in MVAPICH2.

A. GPU Architecture and Programming Model

Graphics Processing Units (GPUs) are increasingly be-

ing used for general purpose computing. They are often

called General Purpose GPUs, or GPGPUs. GPGPUs can be

viewed as a data-parallel multi-core system. In this paper, we

focus on the NVIDIA GPU architecture. In this architecture,

the GPU is connected as a peripheral device on the I/O bus

(PCI express). The latest architectural revision of NVIDIA

GPUs for High-performance computing is called Fermi.

The Fermi [4] GPU architecture consists of 16 streaming

multiprocessors (SMs), each of which consists of 32 cores.
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Each SM includes local memory and uses it as L1 cache;

and all SMs share L2 cache and the directly connected

DRAM. NVIDIA also provides a software framework for

programming its GPUs. It is called the Compute Unified

Device Architecture (CUDA) [5]. Code that runs on the GPU

is often called the GPU kernel. This code is compiled by

NVIDIA compilers and executes in a multi-threaded fashion

with SIMD data model.

In a cluster environment, GPUs are connected to the

local nodes via PCI express and the nodes themselves are

connected to each other via a high-performance network,

such as InfiniBand. GPUs can read/write memory that is

attached on the local node. They cannot access remote

memory directly, and need intervention from the CPU to

do so. The MPI library, for example, sits on the CPU and

is responsible for communication.

Before GPU kernel executes, data must be moved from the

main memory into the device memory for GPU kernel execu-

tion. During the execution, data that needs to be exchanged

between nodes is first moved into the main memory and

then transferred using any standard communication interface.

The data received in the exchange has to be moved into

the device memory for computation. Eventually, the results

have to be moved back into the host memory. The transfers

between device and main memory can be done with CUDA

interfaces, such as cudaMemcpy() for the contiguous data

and cudaMemcpy2D() for strided data.

B. MVAPICH2 on GPU Clusters

The Message Passing Interface (MPI) is the de-facto

standard for parallel applications. MVAPICH and MVA-

PICH2 [6] are popular open-source implementations of MPI

on InfiniBand, 10Gigabit Ethernet/iWARP and the emerging

RDMA over Converged Enhanced Ethernet (RoCE). In this

paper, we only focus on InfiniBand interconnect, but our

mechanism is valid on any advanced interconnects providing

Remote Direct Memory Access (RDMA) capability, with

which communication can be performed without any host

processor involvement.

MVAPICH2 unifies data movement in CUDA and In-

finiBand while providing the standard MPI 2.2 semantics.

This design was first proposed by Wang et. al in [3].

MVAPICH2 leverages the Unified Virtual Addressing (UVA)

feature that is provided by the new CUDA 4.0 release. In

addition to providing unified addressing, MVAPICH2 can

further optimize the performance of GPU to GPU commu-

nication. This is achieved by pipelining transfers from GPU

to host memory, host memory to remote host memory via

InfiniBand and finally from remote host to destination GPU

memory. The three levels of pipelining result in a significant

performance boost. Currently, MVAPICH2 only supports

transfer of contiguous datatypes. In this paper, we present the

design and implementation of MVAPICH2 for optimizing

transfer of non-contiguous MPI datatypes between GPUs.

III. RELATION TO PREVIOUS WORK

Scientists and application developers using heterogeneous

computing systems equipped with GPUs need to manage

two kinds of data transfers: between GPU and Host, and

between different Hosts. This brings about several pro-

gramming challenges. In [3], Wang et. al. show that using

MVAPICH2, the data movement steps can be simplified

when the MPI library is CUDA “aware”. Using MVAPICH2,

an application programmer can directly issue an MPI_Send

(or MPI_Isend) from memory that resides in GPU. This

alleviates the need for the programmer to first stage memory

in host and then issue send or receive operations. Further, it

can pipeline all the various stages of transfer (as discussed

in Section II-B) and achieve better performance than user

optimized approaches. Currently, MVAPICH2 only supports

contiguous datatype communication between GPUs. In this

paper, we focus on communication with non-contiguous MPI

datatypes.

Gelado et.al. propose the Asymmetric Distributed Shared

Memory model (ADSM) to unify host memory and device

memory on the heterogeneous system with GPGPUs [7].

With newly introduced interfaces in ADSM, the device

memory becomes transparent to programmers. ADSM run

time system handles the memory management and the

communication between device memory and host memory

through the memory coherence protocol. In this paper, we

focus on the MPI programming model that is more scalable

than DSM model in a HEC cluster and our approaches

work completely in user-space. Using our proposed methods,

users can write straight MPI code and the MPI library is

responsible for staging any data.

Other programming models for a HEC cluster with GPG-

PUs, like Zippy [8], DCGN [9], and cudaMPI [10] depend

on MPI as the underlying communication method between

nodes. These works can directly benefit from our work as

MVAPICH2 pipelines messages internally.

Pipelining is a widely used technique by application

developers to reduce the communication latency between

host memory and GPU memory. Many researchers have

attempted overlapping memory copy from GPU to host

memory with kernel execution on GPU [11], [12] or MPI

data transfer between nodes [13], [14]. These approaches im-

prove performance at the cost of productivity, since careful

evaluation and tuning is necessary for each target platform.

MVAPICH2 provides a simplified method for application

developers to perform GPU to GPU communication with

highest performance. Instead of tuning each application, only

the MVAPICH2 library needs to be tuned for the platform

and all applications using MPI can directly benefit from it.

There are several researchers optimizing MPI datatype

processing [15], [16], [17], and researchers optimizing data

movement on the advanced network like InfiniBand and

10Gigabit Ethernet [18], [19]. However, none of them have
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considered GPU platforms. Our work shows that when

certain parts of the datatype processing are offloaded on the

GPU device, significant performance improvements can be

gained. To the best of our knowledge, our work is the first

one of its kind to support non-contiguous data processing

and communication from GPU device memory.

IV. DESIGN

Our work in [3] has enabled MVAPICH2 to support GPU

to GPU communication through the standard MPI interface.

In this work we extend it by providing support for non-

contiguous MPI datatype transfers. In the rest of this paper,

we refer to the existing work as MVAPICH2 and the work

proposed in this paper as MV2-GPU-NC.

A. Datatype Processing Offload to GPU

The existing design for GPU to GPU communication in

MVAPICH2 occurs as follows: 1. Application programmer

issues standard MPI communication calls with buffers in

GPU device memory as parameters; 2. MVAPICH2 library

detects if the buffers provided in the MPI call are in the

device memory or in the host memory; 3. As the buffer is

in device memory, the library gets a staging buffer from a

pre-allocated pool and initiates data movement from device

to host, asynchronously (large messages are chunked); 4.

As the data movement to the host completes, transfers over

the network are initiated; 5. The receiver side will move data

into the device as the transfers complete. For large messages,

steps of moving data from device to host, transferring data

over the network and moving data from host to device are

overlapped through a pipeline.

For non-contiguous transfers, the data has to be packed

before it can be sent over the network. This avoids multiple

transfers over the network that can be prohibitively expen-

sive. Currently, application developers move non-contiguous

data from device to the host using cudaMemcpy2D, create

an MPI datatype and then issue an MPI communication

call over the datatype. The MPI library internally packs

and sends the data over the network. On the receiver side,

the MPI library unpacks the data and give it to the user

who then moves the data from host to device using another

cudaMemcpy2D operation. As mentioned in Section I-A

the movement of data from device to host forms a large

part of the total communication time. While designing GPU-

to-GPU transfer of non-contiguous data we have explored

various schemes of packing non-contiguous data from device

memory into host memory. We present a comparison of these

schemes in Figure 2. ”D2H nc2nc” mimics the generally

used scheme of moving non-contiguous data from device

memory to non-contiguous buffer in the host memory with

cudaMemcpy2D. ”D2H nc2c” moves data from a non-

contiguous buffer in device memory to a contiguous buffer

in the host memory. This does the job of packing the

data within the cudaMemcpy2D and is achieved by using

appropriate stride, width and height parameters. ”D2D2H

nc2c2c” uses an intermediate device buffer to pack data

in the device memory before moving it to the host. This

involves a cudaMemcpy2D call from device to device and

then a cudaMemcpy call from device to host. The last two

schemes can offload datatype packing to the GPU by using

asynchronous copies (cudaMemcpy2DAsync). As shown in

the Figure 2, ”D2D2H nc2c2c” provides much better laten-

cies compared to the other schemes for all messages sizes

greater than 64 bytes. For 4M Bytes, latency of ”D2D2H

nc2c2c” is only 4.8% of the latency from “D2H nc2nc”. We

use the ”D2D2H nc2c2c” with asynchronous copies in our

implementation.

B. Communication Pipeline Design

Data movement between GPU device memory and host

memory happens through a DMA which allows for asyn-

chronous progress. Similarly, data transfer over the network

can progress asynchronously using RDMA. In an ideal

scenario, it is possible to implement data transfer from

one GPU to another remote GPU in a completely asyn-

chronous fashion. Our previous research [3] has shown that

for messages beyond a given threshold, movement of data

between device memory and host memory can be completely

overlapped with the RDMA data transfer over the network.

When the data size is smaller than the threshold, data

movement from/into the GPU dominates the overall latency.

As a result, we use the pipeline data transfer for messages

larger than the threshold. However, for non-contiguous data,

latency of packing data in the GPU is always larger than

the RDMA data transfer latency or time for contiguous

data movement between device memory and main memory.

So, data packing and unpacking latency will determine the

pipeline performance.

There are five steps involved in moving data from one

GPU to another GPU on a remote node: “D2D nc2c”

to pack non-contiguous data into contiguous buffer inside

GPU device memory; “D2H c2c” to move the contigu-

ous data from GPU device memory to local host mem-

ory; “RDMA” to do the RDMA data transfer between

nodes; “H2D c2c” to move the contiguous data from

host memory to GPU device memory on the receiver

side; “D2D c2nc” to unpack contiguous data to the non-

contiguous destination buffer inside GPU device memory.

The latency to transfer N bytes of data in this process

is: T d2d nc2c(N) + T d2h c2c(N) + T rdma(N) +
T h2d(N) c2c + T d2d c2nc(N). We observe similar la-

tency for T d2d nc2c(N) and T d2d c2nc(N). So, the

following expression can be used to model the latency of

pipelined non-contiguous data transfer, where the data is

divided into n block: (n+2)∗T d2d nc2c(N/n). Based on

our experimentation, we found 64KB to be the optimal block

size in our experimental environment. This unit is presented

as a configurable parameter to the MPI library and can
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Figure 2. Non-contiguous Data Pack Performance

be tuned once by the system administrator during the time

of installation by using OSU micro-benchmarks. Once the

optimal block size for the cluster is detected, the number can

be placed in a configuration file. This configuration approach

is transparent to the end user.
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Figure 3. Non-contiguous Data Pipeline Design

Figure 3 illustrates the architecture of our pipeline design

for the vector data type. When the memory from param-

eters in the MPI call is detected in the device memory,

the sender grabs a temporary buffer called tbuf in the

device memory to pack the non-contiguous source data;

and triggers multiple asynchronous memory copy with

cudamemcpy2DAsync() function, each of which does

a chunk size non-contiguous data pack. Then the sender

returns back to MPI progress engine and sends a Request To

Send (RTS) message to the receiver to get the RDMA Put

address. During the handshaking process, if MPI progress

engine finds any pack operation finished, the sender will get

a chunk sized buffer called vbuf from host memory buffer

pool, and starts the asynchronous memory copy from device

to host (from tbuf to vbuf) with cudamemcpyAsync()

function. When the receiver receives the RTS, it will reply

back a Clear To Send (CTS) message based on MPI message

matching semantics. In the CTS message, the receiver will

encode the remote buffer address and size of the message

to be received. The address encoded in the CTS message is

that of a list of vbufs. Once the CTS message is received

and one of the asynchronous memory copies finishes, the

sender will call InfiniBand verbs interface to perform the

RDMA write. After each RDMA write finishes, the sender

will send out a RDMA write finish message. When the

receiver gets the RDMA write finish message, it starts the

asynchronous CUDA memory copy to copy data from a

vbuf to the corresponding place of tbuf. Finally, when any

CUDA memory copy from host to device is finished, the

corresponding unpack operation will be started to do the

data unpack in the device memory.

C. Programming model

With the proposed methods in MV2-GPU-NC, application

programmers can easily send/receive non-contiguous data

in GPU device memory and get much better performance.

Figure 4 provides a comparison of code complexity for

GPU to GPU vector transfers using existing methods and

using the proposed deisgn of MV2-GPU-NC. Figure 4(a)

shows a naive implementation using blocking CUDA 2D

memory copies and blocking MPI communication calls. It

312



MPI_Type_vector();
MPI_Type_commit();
...
if (haveEastNeighbor) {
        // copy noncontiguous data from device to host 
        cudaMemcpy2D(...); 
        // send data with vector type to east neighbor
        MPI_Send(...); 
        // receive data with vector type from east neighbor
        MPI_Recv(...);
        // copy noncontiguous data from host to device        
        cudaMemcpy2D(...); 
}
...

(a) MPI and CUDA without pipelining (high productivity, bad perfor-
mance)

MPI_Type_vector();
MPI_Type_commit();
...
if (haveEastNeighbor) {
    for (i = 0; i < pipeline_length; i++) {
        // pack each block from non contiguous to contiguous in GPU
        cudaMemcpy2DAsync( );  
    }
    while (active_pack_stream || active_d2h_stream ) {
        if (active_pack_stream > 0) {                                           
            if (cudaStreamQuery() == cudaSuccess) {
                // copy each block from device memory to host memory     
                cudaMemcpyAsync( );

}
        }
        if (active_d2h_stream > 0) {
            if (cudaStreamQuery() == cudaSuccess) {
                // send each block to east neighbor from host memory                            
                MPI_Isend(...);                             
            }
        }
    }
    MPI_Waitall(...);
    for (j=0; j < pipeline_length; j++) {
        // receive each block from east neighbor to host memory
        MPI_Irecv(...);
    }
    while (active_recv > 0 || active_h2d_stream > 0) {
        if (active_recv > 0) {
            MPI_Test (...);
            // copy each block from host memory to device memory
            cudaMemcpyAsync (...); 
        }
        if (active_h2d_stream > 0) {
            if (cudaStreamQuery()== cudaSuccess) {
                // unpack each block from contiguous to non contiguous in GPU   
                cudaMemcpy2DAsync(...);                        
            }
        }
    }
}

(b) MPI and CUDA with pipelining (low productivity, good perfor-
mance)

MPI_Type_vector();
MPI_Type_commit();
...
if (haveEastNeighbor) {
        // send data with vector type from device memory to east neighbor
        MPI_Send(...); 
        // receive data with vector type to device memory from east neighbor 
        MPI_Recv(...);
}

(c) MV2-GPU-NC (highest performance and productivity)

Figure 4. Pseudo-code comparing existing approaches and MV2-GPU-NC
non-contiguous data communication between GPUs

is straightforward for application developers but does not

provide good performance. Figure 4(b) shows how an appli-

cation developer can improve the performance by carefully

interleaving non-blocking memory copy and MPI commu-

nication calls. This method follows the aforementioned idea

in Section IV-A to pack and unpack non-contiguous data

with GPU. Although it can provide good performance, this

method is complicated for programmers and the platform

specific performance tuning is a big challenge. Figure 4(c)

shows the ease with which application developers can exploit

overlap using MV2-GPU-NC: the standard MPI interfaces

are used; and the underlying library takes care of the

optimizations.

V. EXPERIMENT AND EVALUATION

We used a cluster with eight nodes in our experimental

evaluation. Each node is equipped with dual Intel Xeon

Quad-core Westmere CPUs operating at 2.53 GHz, 12 GB

host memory, and Nvidia Tesla C2050 GPUs with 3 GB

DRAM. The InfiniBand HCAs used on this cluster are

Mellanox QDR MT26428. Each node has Red Hat Linux

5.4, OFED 1.5.1, MVAPICH2-1.6RC2, and CUDA Toolkit

4.0. The MPI level evaluation is based on OSU Micro

Benchmarks [20]. We modified Stencil2D application in

SHOC 1.0.1 with MV2-GPU-NC to send and receive both

contiguous and non-contiguous data in GPU device memory.

We run one process per node and use one GPU per process

for all experiments.

A. Performance Evaluation for Vector Data

In this section, we compare the performance of

vector type non-contiguous data transfer using bench-

marks based on the three designs shown in Figure 4.

“Cpy2D+Send” uses the blocking design shown in Fig-

ure 4(a). It uses cudaMemcpy2D() to move non-

contiguous data between device and host, and MPI_Send()

and MPI_Recv() to transfer data between the nodes.

“Cpy2DAsync+CpyAsync+Isend” follows the design shown

in Figure 4(b) that uses cudaMemcpy2DAsync() to

pack and unpack data inside the device memory and

uses cudaMemcpyAsync() to move data between de-

vice memory and host memory. Through asynchronous 2D

copies, this method offloads the packing and unpacking

operations to the GPU, and it uses non-blocking MPI calls.

This method provides good performance for vector data

transfer from GPU to GPU without MV2-GPU-NC through

a carefully pipelined implementation. “MV2-GPU-NC” rep-

resents the method proposed in this paper: non-contiguous

datatype processing offloaded to GPU and asynchronous

pipeline used inside MVAPICH2 library. This design is

shown in Figure 4(c). These benchmarks are run on a 1x2

process grid for varying non-contiguous message sizes and

a constant chunk size of 4 bytes (float).
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Figure 5. Vector Communication Latency

The results for small message and large message transfers

are shown in Figure 5(a) and Figure 5(b), respectively.

“MV2-GPU-NC” can achieve up to 88% latency improve-

ment over “Cpy2D+Send” for 4M byte message. There are

two key reasons for the performance improvement observed

here: 1. The use of GPU for data packing and unpacking is

better for most of the data sizes as illustrated in Figure 2;

2. The use of the complete asynchronous pipeline is better

by overlapping data packing and unpacking, data move-

ment between device and host, and MPI transfer between

nodes. “Cpy2DAsync+CpyAsync+Isend” and ”MV2-GPU-

NC” show similar performance as they follow a similar

implementation at the benchmark and library levels, respec-

tively. ”MV2-GPU-NC” hides the complexity of pipelining

and the overhead of platform specific tuning from applica-

tion developers.

B. Performance evaluation for Stencil2D

Scalable HeterOgeneous Computing benchmark

(SHOC) [2] is a suite of benchmarks to test the performance

and stability of heterogeneous computing systems built

with GPUs and multi-core processors. The application

benchmark of interest in this work is the Stencil2D which is

designed to measure the performance of a two-dimensional

nine point stencil calculation. It has a halo communication

exchange.

1) Communication Breakdown: Figure 6 shows a break-

down of the communication time in Stencil2D. The ex-

periment was carried out on a 2x4 process grid with a

8Kx8K single precision data set per process. The time shown

in the figure is at rank 1, which has neighbors in three

dimensions: south, west and east. South mpi, west mpi

and east mpi represent the time spent in mpi. South cuda,
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Figure 6. Dimension-wise Communication Breakdown in Stencil2D

west cuda and east cuda represent the time spent in moving

data between device and main memory. We see that non-

contiguous data movement between the device memory and

the main memory dominates the communication time. In

the following sections, we present results with Stencil2D

modified to use MV2-GPU-NC.

2) Code Complexity Comparison: The existing com-

munication of Stencil2D is similar to the one shown in

Figure 4(a) except that it uses non-blocking MPI_Irecv.

We have used MV2-GPU-NC to modify the communication

exchange in Stencil2D. We call the original version as

“Stencil2D-Def” and the modified version as “Stencil2D-
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Stencil2D-Def Stencil2D-MV2-GPU-NC

Function calls

MPI Irecv: 4 MPI Irecv: 4
MPI Send 4 MPI Send: 4

MPI Waitall: 2 MPI Waitall: 2
cudaMemcpy: 4 cudaMemcpy: 0

cudaMemcpy2D: 4 cudaMemcpy2D: 0

Lines of Code 245 158

Table I
COMPARING COMPLEXITY OF EXISTING STENCIL2D CODE WITH

MODIFIED CODE USING MV2-GPU-NC

Process Grid Stencil2D- Stencil2D-
Improvement

(Matrix Size/Process) Def MV2-GPU-NC

1x8
0.547788 0.314085 42%

(64k x 1k)

8x1
0.33474 0.272082 19%

(1k x 64k)

2x4
0.36016 0.261888 27%

(8k x 8k)

4x2
0.33183 0.258249 22%

(8k x 8k)

Table II
COMPARING MEDIAN EXECUTION TIMES OF STENCIL2D - SINGLE

PRECISION (SEC)

MV2-GPU-NC”. Table I compares these two implementa-

tions for code complexity. “Function Calls” is the num-

ber of function calls in the main loop of Stencil2D and

“Lines of Code” is the number of lines of code in the

main loop. In “Stencil2D-Def” the programmer has to

call cudaMemcpy() and cudaMemcpy2d() four times

each to move data out of and into the device memory

for north/source and east/west directions respectively, while

in “Stencil2D-MV2-GPU-NC” the programmer can directly

provide the buffers in device memory as parameters in MPI

communication calls. As a result, we observe that using

MV2-GPU-NC, the code used in this loop is decreased by

36% (from 245 lines to 158 lines).

Process Grid Stencil2D- Stencil2D-
Improvement

(Matrix Size/Process) Def MV2-GPU-NC

1x8
0.780297 0.474613 39%

(64k x 1k)

8x1
0.563038 0.438698 22%

(1k x 64k)

2x4
0.57544 0.424826 26%

(8k x 8k)

4x2
0.546968 0.431908 21%

(8k x 8k)

Table III
COMPARING MEDIAN EXECUTION TIMES OF STENCIL2D - DOUBLE

PRECISION (SEC)

3) Performance Comparison: In this section, we com-

pare the performance of the two versions of Stencil2D:

“Stencil2D-Def” and “Stencil2D-MV2-GPU-NC”. Table II

presents the median execution times of each Stencil2D

iteration on five different process grids and single precision

data sets. Table III presents results on the same set of

configurations but with double precision data. In a “1x8”

process grid, the data exchange happens only in the east-

west dimension and involves non-contiguous buffers. In a

“8x1” process grid, data exchange happens only in the north-

south dimension and hence involves contiguous buffers.

Due to device memory requirements of SHOC benchmark

suite, we had to limit our matrix size per process to 256M

Bytes to run Stencil2D. To evaluate the proposed pipelining

schemes, which get activated beyond 64K Bytes, we used

a larger matrix size in the communicating dimension in

these two cases. We used a 64K x 1K matrix per process

for the ”1x8” process grid and a 1K x 64K matrix per

process for the ”8x1” process grid. The other process grids

“2x4” and “4x2” have communication in both east-west and

north-south dimensions. We used an 8K x 8K matrix per

process for these two cases. The time reported here includes

time for GPU kernel execution and data exchange. For the

single precision data set, “Stencil2D-MV2-GPU-NC” can

get 42%, 19%, 27% and 22% improvement in latency on the

”1x8”, ”8x1”, ”2x4” and ”4x2” process grids, respectively.

We clearly see the highest improvement on the ”1x8” grid

because of the larger non-contiguous data movement. This

case gets benefits from GPU offloaded datatype processing

and the use of pipelining. We see the least improvement on

the “8x1” process grid where the transfers are contiguous.

The benefits for this case are from pipelining alone. For

“2x4” and “4x2” cases, the percentage of non-contiguous

data exchange are 60% and 40%, respectively and hence we

see greater improvement on the “2x4” grid than on the “4x2”

grid though they use the same data set per process. For the

double precision data set, “Stencil2D-MV2-GPU-NC” can

get 39%, 22%, 26% and 21% improvement, respectively.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we design, implement, and evaluate a

high performance GPU to GPU communication method

for non-contiguous data in InfiniBand clusters. Our design

not only eases programmers’ effort on non-contiguous data

communication from GPU to GPU, but also provides the

high performance through offloading datatype processing

from CPU to GPU and pipelining all stages in data transfer.

To the best of our knowledge, it is the first research paper

to describe a high performance approach for non-contiguous

datatype communication between GPUs.

The investigation reveals that our approach can achieve up

to 88% latency improvement for vector datatype at 4 MB

data size with micro benchmarks. For Stencil2D benchmark,

our approach can simplify the data communication in its
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main loop, reducing the lines of code by 36%; at the same

time, its performance can be improved by up to 42% and

39% for single precision and double precision data set,

respectively.

We intend to continue working in this direction. The

approach developed in this paper will be integrated into

future public MVAPICH2 releases. We also plan to evaluate

the impact of our approach with more applications.
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