Grid Computing

11M37152
Takafumi Saito

Reference

e Title:“Supporting GPU Sharing in Cloud
Environments with a Transparent Runtime
Consolidation Framework”

 Writer : Vignesh T. Ravi, Michela Becchi,
Gagan Agrawal, Srimat Chakradhar

 Conference : HPDC’11 Best Paper Award

Outline

Background

Approach

Software Design
Policies and Algorithm
Evaluation

Conclusion

Outline

* Background

GPU

* Graphics Processing Units

e GPGPU(General-Purpose GPU)

— Popular in high performance computing

— Advantage
* Extreme-scale
* Cost-effective
* Power-effective

SM

GPU architecture

AAERAOTHARENEIEH
SEEEEEEEEEEEE

!
5]
ol
n-
[
53
=
|5}
=
=2}
M
)
s}
==
=

GigaThead

Fermi's 16 SM are positioned around a common L2 cache. Each SM is a vertical
rectangular strip that contain an orange portion (scheduler and dispatch), a green portion
(execution units), and light blue portions (register file and L1 cache).

Background

 Cloud Environments
— “pay-as-you-go”
— Easy to use up-to-data resources
— no need to maintenance for users

— GPU on cloud will be important in HPC

oJ

Windows Azure
amazon ﬁ
webservices" =

Purpose

* Make GPU shared resource in the cloud
* Motivation

— Multiple VMs sharing single GPU on multi-core
node

— Good cost performance
— Utilization of high degree of parallelism

Outline

* Approach

Approach

* Framework to enable applications to share
GPUs

e Contributions

— Extensions of GPU virtual software for
consolidation

— Solutions to the conceptual problem of
consolidation
* Affinity score
* molding

Relationship between
resource utilization and performance

* Three applications scale until 8 thread blocks
— Because of the number of thread blocks exceeds the number of SMs

* Image Processing gets better performance over 8 thread blocks
— Low-overhead context switching mask memory latencies

B Black Scholes ®Binomial Options @ PDE Solver B Image Processing

14

=
QN

Speedup Over 1%256

o N B Oy

2%256 4*256 8%256 16%256 32*256 64%256
Execution configuration

Evaluation experiment in
consolidation

 GPU Sharing
— Space Sharing : assign subset of SMs to each of kernels
— Time Sharing : time-share SMs among kernels

2.5

Space Sharing Time Sharing

2

1.5

1

0.5

Relative Throughput Benefit

BlackScholes + Binomial Image Processing + PDE
Options Solver

Applications

Outline

e Software Design

Design Challenge

* How to Enable Sharing of GPU(s) across
Different Applications?

— create a virtual process context
 What and How to Consolidate?
— Use information for consolidation decision
* How to Achieve a Low Overhead Design?

— Overhead of virtual machine on GPU is low

— Overhead of virtual process context and
consolidation decisions must be kept low

gVirtuS Current Design

e gVirtu$S
— Open source virtual machine to run CUDA-enabled applications
* gVirtus compornent

— Frontend library : intercept CUDA call and redirect to backend
— Backend daemon : transfar

VM,

CUDA
App:

| gVirtuSFE

\ Linux / VMv/
\ //Msocket

gVirtuS Backend

Backend Backend
Process 1 Process 2
Host Side

CUDA Runtime

Guest Side

gVirtuSFE

CUDA Driver

GPU, 1| GPU,

Runtime Consolidation Framework

* Improved Backend

— DCDM(Dispatcher and Consolidation Decision Maker)
— VCC(Virtual Context with Consolidation)

Workloads arrive from Frontend

BackEnd Server

Queues Workloads
to Dispatcher

Dispatcher &
Consolidation
Decision Maker

Queues Workloads Policies | Heuristics Host Side
to Virtual Context
Ready Queue 4
Virtual Virtual
Context Context
Workload Workload
Consolidator Consolidator

GPU GPU

DCDM & VCC

* DCDM

— Reads execution configuration of the kernels

— Changes into information to decide consolidation
benefits

e VCC
— Creates a virtual context for each GPUs

Design Issues and Limitations

* No use constant memory and texture memory

Outline

* Policies and Algorithm

Causes of Resource Contention

e SMs

— If the sum of thread blocks is more than the
number of available SMs

* Shared Memory

— |f aggregated shared memory requirements
exceed the amount of available shared memory

— mold the number of thread blocks and/or the
number of threads to avoid contentions

Policies of Molding

* Forced Space Sharing
— Reduce the number of thread blocks
— Increase the number of threads of each block

* Time Sharing with Reduced Threads
— Reduce the number of threads of each block

Consolidation Algorithm

 Consolidate N given kernels on 2 GPUs

Algorithm 1 Runtime Consolidation Scheduling Algorithm

1: Configuration List of all N Kernels
2: WQ1 =, WQQ =¢
3: A[][] = GeneratePairwiseA ffinity (K)
4: [k;.k;] = FindMinAffinityPair(A[][])
5: Push k; into WQq
6: Push k; into WQ2
7: for all Kernels K - k; and k; do
8: k; = GetNextKernel()
9: a1 = GetAffinityForList(ConfigList(k;, WQ1))
10: ag = GetAffinityForList(ConfigList(k;, WQ2))
11: [az.NewConfigSet] = GetAffinityByMolding(ConfigList(k;,
WQ1))

12: [as.NewConfigSet] = GetAffinityByMolding(ConfigList(k;,
WQ2))

13: if MaxAffinity(a;) then

14: Push k; into WQq

15: else if MaxAffinity(az) then

16: Push k; into WQ»

17: else if MaxAffinity(as) then

18: Apply NewConfigSet to k; and WQq

19: Push k; into WQ1

20: else

21: Apply NewConfigSet to k; and WQ2

22: Push k; into WQ»

23: endif

24: end for

25: Dispatch WQy to Virtual Context; for consolidation
26: Dispatch WQ2 to Virtual Contexts for consolidation

Pair-wise Affinity Score

 Compute affinity score for set of kernels

Algorithm 2 Generate Pairwise Affinity

I: Input: Kernel Configuration set K1...Kn

2: for: =1toNdo

3 for j = 1toNdo

4 if 2 4 jand 57 > 7 then

5: if SpaceSharing(k;. k;) then

6: Affinity[1,] = 1

7 else

8 if SHMEM; + SHMEM; > MAXSHMEM then
9: Affinity[i,j] =0
10: else
11: Affinity[1,j]=1-(THREADS;+THREADS)/1000
12: end if
13: end if
14: end if
15: end for
16: end for

17: Return Affinity[i,j]

Affinity Score with WQ

* thereis shared memory contention
— Convert time sharing to space sharing
* the sum of threads of kernels is large
— Change to suitable molding configuration

Algorithm 3 Get Affinity By Molding

. Input: Configuration of Next Kernel to Schedule, k;

Configuration of list of kernels in WQ

V[] = FindKernelSetViolatingSHMEM(k;, WQ)
if nonempty(V|[]) then

NewConfigList. Append(ConvertToSpaceSharing(V[]))
end if
for each remaining Time Sharing kernel £ in WQ do

if T'otT' hreads 1s large then

NewConfigList. Append(FindConfigForMold(k))

end if

end for

: Affinity = GetAffinityForList(NewConfigList)
: Return [Affinity, NewConfigSet]

Outline

e Evaluation

Evaluation

* Setup
— CPU : 2 Intel Xeon E5520
— Memory : 4GB

— GPU : 2 Nvidia Tesla C2050
e 14 SMs (shared memory : 48KB)
e 32 cores (1.15GHz) per SM
* Device memory : 3GB

— gVirtus$: version 2.0

Evaluation

* Benchmarks
— 8 benchmark applications

* Low Shared Memory : ~3KB
* Median Shared Memory : ~16KB
* Heavy Shared Memory : ~48KB

Memory characteristics Data Set Description

Image Processing(IP) No Shared Memory 2 * 3584 * 3584 points

PDE Solvers (PDE) No Shared Memory 2 * 3584 * 3584 points
BlackScholes(BS) No Shared Memory 1.000.000 options

Binomial Options(BO) Low Shared Memory 256 options, 2048 steps
K-means Clustering(KM) Median Shared Memory 4.194.304 points

K-Nearest Neighbor (KNN) Median Shared Memory 4.194.304 points

Euler(EU) Heavy Shared Memory 10.000 nodes, 60.000 edges

Molecular Dynamics(MD) Heavy Shared Memory 130.000 nodes, 16.200.000edges

Evaluation of basic policy

e Evaluations of space sharing and time sharing
— Blind consolidation policy
— Applications mapped to GPU in round robin fashion

Space Sharing

> - BATCH 1 . BATCH 2
|
£ | GPU1
1.95
c GPU2 |
@ |
5 19 |
-2 I
gﬂ 1
E 1.85 I
” GPU 1 I
2 |
: . .
o |
o |
1.75 :
BO+KNN ' PDE+MD EU+IP
Workload Mix

Figure 7: Throughput Benefits from Space Sharing

Time Sharing

BATCH 2 BATCH 3

GPU1

BATCH 1

o~
- -

»

GPU1

GPU 2

Relative Throughput Benefit
e e

I
1
|
|
|
1
|

W ————————————

N W o N

1
P+KNN PDE+BS ' BS+BO KM+KNN' BO+EU BS+MD
Workload Mix

Figure 8: Throughput Benefits from Time Sharing

Impact of Contention on Basic Policies

* Contention occur on basic policies when ...

— the number of threads per SM is large
* batchl and batch2

— resource requirements exceed the SM availability
* batch3

15 BATCH 3

BATCH 1 BATCH 2

&

GPU1 GPU 2

o
()

Relative Throughput Benefit
(=)
A

I
1
I
I
I
GPul GPU2 | GPUl Gpy2
I
|
|
I
|
|
|
|
I
|
|

IP+BS PDE+MDI IP+BO BS+KM 'KM+EU KNN+MD
Workload Mix

——————————— -

Figure 9: Drawbacks of Basic Policies

Impact of Contention on Basic Policies

B BO + KM + KNN

w

M
W

o
(¥

=

Relative Throughput Benefit
[
= U N

384 768 1024

No. of Threads (GPU 1)

Figure 10: Impact of Large Threads on Throughput

Impact of affinity Score

BS+KM BO + KNN

2,75 No Affinity : Affinity
g , . GPU1 GPU 2
: 1.75 :
@ GPU 1 GPU2 |
. I
-go 1.25 '
o 1 [
I
E 0.75 —
S I
2 05 - l ~ ~
= 0.25 L | B o
o | o+ o
0 t al o
I

BS+BO KM + KNN
Workload Mix

Figure 11: Effect of Affinity Scores on Throughput

Impact of molding for threads

* One application per GPU is molded
— IP and PDE

B No Molding O Molding

fi
-
o

GPU1 GPU 2

Relative Throughput Benefit

IP+ BS

Workload Mix

Impact of molding for shared memory

* Time Sharing with Reduced Threads is performed on GPU1
* Forced Space Sharing is performed on GPU?2

B NoMolding [Molding

-

« 1.8

% 16 GPU1 GPU 2

@ 14

312

'§0 1

o 0.8

< 06

204 .

% 0.2 s |

g o =
IP+BO BS+KM

Workload Mix

Molding

* Using Forced Space Sharing to avoid shared
memory contention

B No Molding [Molding

2 2
318 GPU1 GPU 2
@ 16 .
< 1.4
212 f—
‘é" 1
=08 - ——
= 06 ~
> 04 b
® 02 <
2 o a
KM + EU KNN + MD

Workload Mix

Impact of Molding on Applications

e Case of reducing the number of thread
— IP, PDE, and KM

— They have noticeable loss in performance

Slowdown (%)
& & 8 R K B

Q

| PDE KM
Workload

Choice of Molding Type

Slowdown (%)

5 & 8 &8

[
(]

o

O Time Sharing with Reduced Threads

B Forced Space Sharing

IP PDE BO
Workload

Impact of High Contention

 Eight applications are consolidated on two GPU

OGPU1 BGPU2
18 No Affinity

16 - No Molding

Affinity + Molding

14 -
1.2

Relative Throughput Benefit

ER I I R I

'éo 56,1024

x

%,

x

Framework Overhead Analysis

* Framework overhead when no consolidation

$

o 05

..

g 04

qg’ 03

SRER R
w 0.1

: B

KM KNN MD
Benchmarks

Framework Overhead Analysis

* Framework Overhead when scheduling than the
available GPUs

BATCH 2

BATCH 1
GPU 1

o

. l~ .
e bhw s

[

&
o

Framework Overhead (%)

o

I
IP+BS PDE+BO * BS+KM BO + KNN
Workload Mix

Outline

 Conclusion

Conclusion

* Present framework to enables applications to
share GPUs

— Extend gVirtuS$ for enabling consolidation

e Evaluate framework
— Guarantee performance over sequential execution

— Improve throughput using consolidation algorithm
when contention occur

Comments

e No evaluation in cloud environment

