Grid Computing

11M37152
Takafumi Saito



Reference

e Title:“Supporting GPU Sharing in Cloud
Environments with a Transparent Runtime
Consolidation Framework”

 Writer : Vignesh T. Ravi, Michela Becchi,
Gagan Agrawal, Srimat Chakradhar

 Conference : HPDC’11 Best Paper Award



Outline

Background

Approach

Software Design
Policies and Algorithm
Evaluation

Conclusion



Outline

* Background



GPU

* Graphics Processing Units

e GPGPU(General-Purpose GPU)

— Popular in high performance computing

— Advantage
* Extreme-scale
* Cost-effective
* Power-effective




SM

GPU architecture
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Fermi's 16 SM are positioned around a common L2 cache. Each SM is a vertical
rectangular strip that contain an orange portion (scheduler and dispatch), a green portion
(execution units), and light blue portions (register file and L1 cache).



Background

 Cloud Environments
— “pay-as-you-go”
— Easy to use up-to-data resources
— no need to maintenance for users

— GPU on cloud will be important in HPC
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Purpose

* Make GPU shared resource in the cloud
* Motivation

— Multiple VMs sharing single GPU on multi-core
node

— Good cost performance
— Utilization of high degree of parallelism
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* Approach



Approach

* Framework to enable applications to share
GPUs

e Contributions

— Extensions of GPU virtual software for
consolidation

— Solutions to the conceptual problem of
consolidation
* Affinity score
* molding



Relationship between
resource utilization and performance

* Three applications scale until 8 thread blocks
— Because of the number of thread blocks exceeds the number of SMs

* Image Processing gets better performance over 8 thread blocks
— Low-overhead context switching mask memory latencies

B Black Scholes ®Binomial Options @ PDE Solver B Image Processing
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Evaluation experiment in
consolidation

 GPU Sharing
— Space Sharing : assign subset of SMs to each of kernels
— Time Sharing : time-share SMs among kernels
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e Software Design



Design Challenge

* How to Enable Sharing of GPU(s) across
Different Applications?

— create a virtual process context
 What and How to Consolidate?
— Use information for consolidation decision
* How to Achieve a Low Overhead Design?

— Overhead of virtual machine on GPU is low

— Overhead of virtual process context and
consolidation decisions must be kept low



gVirtuS Current Design

e gVirtu$S
— Open source virtual machine to run CUDA-enabled applications
* gVirtus compornent

— Frontend library : intercept CUDA call and redirect to backend
— Backend daemon : transfar

VM,

CUDA
App:
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\ Linux / VMv/
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gVirtuS Backend
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Runtime Consolidation Framework

* Improved Backend

— DCDM(Dispatcher and Consolidation Decision Maker)
— VCC(Virtual Context with Consolidation)

Workloads arrive from Frontend

BackEnd Server

Queues Workloads
to Dispatcher

Dispatcher &
Consolidation
Decision Maker

Queues Workloads Policies | Heuristics Host Side
to Virtual Context
Ready Queue 4
Virtual Virtual
Context Context
Workload Workload
Consolidator Consolidator

GPU GPU



DCDM & VCC

* DCDM

— Reads execution configuration of the kernels

— Changes into information to decide consolidation
benefits

e VCC
— Creates a virtual context for each GPUs



Design Issues and Limitations

* No use constant memory and texture memory
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* Policies and Algorithm



Causes of Resource Contention

e SMs

— If the sum of thread blocks is more than the
number of available SMs

* Shared Memory

— |f aggregated shared memory requirements
exceed the amount of available shared memory

— mold the number of thread blocks and/or the
number of threads to avoid contentions



Policies of Molding

* Forced Space Sharing
— Reduce the number of thread blocks
— Increase the number of threads of each block

* Time Sharing with Reduced Threads
— Reduce the number of threads of each block



Consolidation Algorithm

 Consolidate N given kernels on 2 GPUs

Algorithm 1 Runtime Consolidation Scheduling Algorithm

1: Configuration List of all N Kernels
2: WQ1 =, WQQ =¢
3: A[][] = GeneratePairwiseA ffinity (K)
4: [k;.k;] = FindMinAffinityPair(A[][])
5: Push k; into WQq
6: Push k; into WQ2
7: for all Kernels K - k; and k; do
8:  k; = GetNextKernel()
9: a1 = GetAffinityForList(ConfigList(k;, WQ1))
10:  ag = GetAffinityForList(ConfigList(k;, WQ2))
11:  [az.NewConfigSet] = GetAffinityByMolding(ConfigList(k;,
WQ1))

12:  [as.NewConfigSet] = GetAffinityByMolding(ConfigList(k;,
WQ2))

13: if MaxAffinity(a;) then

14: Push k; into WQq

15:  else if MaxAffinity(az) then

16: Push k; into WQ»

17:  else if MaxAffinity(as) then

18: Apply NewConfigSet to k; and WQq

19: Push k; into WQ1

20:  else

21: Apply NewConfigSet to k; and WQ2

22: Push k; into WQ»

23:  endif

24: end for

25: Dispatch WQy to Virtual Context; for consolidation
26: Dispatch WQ2 to Virtual Contexts for consolidation




Pair-wise Affinity Score

 Compute affinity score for set of kernels

Algorithm 2 Generate Pairwise Affinity

I: Input: Kernel Configuration set K1...Kn

2: for: =1toNdo

3 for j = 1toNdo

4 if 2 4 jand 57 > 7 then

5: if SpaceSharing(k;. k;) then

6: Affinity[1,] = 1

7 else

8 if SHMEM; + SHMEM; > MAXSHMEM then
9: Affinity[i,j] =0
10: else
11: Affinity[1,j]=1-(THREADS;+THREADS)/1000
12: end if
13: end if
14: end if
15: end for
16: end for

17: Return Affinity[i,j]




Affinity Score with WQ

* thereis shared memory contention
— Convert time sharing to space sharing
* the sum of threads of kernels is large
— Change to suitable molding configuration

Algorithm 3 Get Affinity By Molding

. Input: Configuration of Next Kernel to Schedule, k;

Configuration of list of kernels in WQ

V[] = FindKernelSetViolatingSHMEM(k;, WQ)
if nonempty(V|[]) then

NewConfigList. Append(ConvertToSpaceSharing(V[]))
end if
for each remaining Time Sharing kernel £ in WQ do

if T'otT' hreads 1s large then

NewConfigList. Append(FindConfigForMold(k))

end if

end for

: Affinity = GetAffinityForList(NewConfigList)
: Return [Affinity, NewConfigSet]
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Evaluation

* Setup
— CPU : 2 Intel Xeon E5520
— Memory : 4GB

— GPU : 2 Nvidia Tesla C2050
e 14 SMs (shared memory : 48KB)
e 32 cores (1.15GHz) per SM
* Device memory : 3GB

— gVirtus$ : version 2.0



Evaluation

* Benchmarks
— 8 benchmark applications

* Low Shared Memory : ~3KB
*  Median Shared Memory : ~16KB
*  Heavy Shared Memory : ~48KB

Memory characteristics Data Set Description

Image Processing(IP) No Shared Memory 2 * 3584 * 3584 points

PDE Solvers (PDE) No Shared Memory 2 * 3584 * 3584 points
BlackScholes(BS) No Shared Memory 1.000.000 options

Binomial Options(BO) Low Shared Memory 256 options, 2048 steps
K-means Clustering(KM) Median Shared Memory 4.194.304 points

K-Nearest Neighbor (KNN) Median Shared Memory 4.194.304 points

Euler(EU) Heavy Shared Memory 10.000 nodes, 60.000 edges

Molecular Dynamics(MD) Heavy Shared Memory 130.000 nodes, 16.200.000edges



Evaluation of basic policy

e Evaluations of space sharing and time sharing
— Blind consolidation policy
— Applications mapped to GPU in round robin fashion



Space Sharing
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Figure 7: Throughput Benefits from Space Sharing



Time Sharing
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Figure 8: Throughput Benefits from Time Sharing



Impact of Contention on Basic Policies

* Contention occur on basic policies when ...

— the number of threads per SM is large
* batchl and batch2

— resource requirements exceed the SM availability
* batch3
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Figure 9: Drawbacks of Basic Policies



Impact of Contention on Basic Policies
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Figure 10: Impact of Large Threads on Throughput



Impact of affinity Score
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Figure 11: Effect of Affinity Scores on Throughput



Impact of molding for threads

* One application per GPU is molded
— IP and PDE
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Impact of molding for shared memory

* Time Sharing with Reduced Threads is performed on GPU1
* Forced Space Sharing is performed on GPU?2
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Molding

* Using Forced Space Sharing to avoid shared
memory contention
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Impact of Molding on Applications

e Case of reducing the number of thread
— IP, PDE, and KM

— They have noticeable loss in performance
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Choice of Molding Type
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Impact of High Contention

 Eight applications are consolidated on two GPU
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Framework Overhead Analysis

* Framework overhead when no consolidation
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Framework Overhead Analysis

* Framework Overhead when scheduling than the
available GPUs
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 Conclusion



Conclusion

* Present framework to enables applications to
share GPUs

— Extend gVirtuS$ for enabling consolidation

e Evaluate framework
— Guarantee performance over sequential execution

— Improve throughput using consolidation algorithm
when contention occur



Comments

e No evaluation in cloud environment



