
High Performance Computing
9th Lecture

2016/10/28

YUKI ITO

1

Selected Paper:

vDNN: Virtualized Deep Neural Networks for Scalable,
MemoryEfficient Neural Network Design

◦ Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar,

Stephen W. Keckler, NVIDIA

◦ Published as a conference paper at the 49th IEEE/ACM International
Symposium on Microarchitecture (MICRO-49), 2016

2

Outline:

1. Introduction

2. Background and Motivation

3. Virtualized DNN

4. Methodology

5. Results

6. Related work

7. Conclusion

3

1. Introduction:

Deep neural networks (DNNs) have recently been successfully
deployed in various application domains.
◦ Due to the tremendous compute horsepower offered by GPUs

Popular machine learning frameworks use GPUs for accelerated
deep learning.
◦ The DRAM capacity of the GPUs limit the size of the DNN that can be

trained.

4

1. Introduction:

e.g) Titan X: 12 GB memory capacity

The trend in deep learning is to
move towards larger and deeper
network designs.
◦ The physical memory limitations of

GPUs is becoming important.

5

1. Introduction:

In this paper, authors propose vDNN.

vDNN (virtualized Deep Neural Network)
◦ A runtime memory management solution that virtualizes the

memory usage of DNN across both GPU and CPU memories.

◦ vDNN allows to train larger and deeper networks beyond the
capacity of GPU.

6

2. Background and Motivation

DNNs are designed using a combination of multiple types of layers.
◦ Convolutional layer

◦ Activation layer

◦ Pooling layer

◦ Fully-connected layer.

Convolutional neural networks are one of the most popular ML
algorithms for image recognition.
◦ These DNNs are trained using a backward propagation algorithm.

7

feature extraction layers

classification layers

2. Background and Motivation
Forward propagation is performed from the first layer to the last layer.

Backward propagation is performed in the opposite direction.
◦ Both propagations traverse the network layer-wise.

8

2. Background and Motivation

Per layer memory allocations required are determined by the layer’s
input-output relationships and its mathematical function.

e.g) Convolutional layer
◦ Forward: input/output feature maps (X and Y), weights of the layer (W)

◦ Backward: input/output gradient maps (dY and dX), weight’s gradient (dW),

X and W

◦ If FFT based convolution algorithm is used, it needs an additional workspace
(WS) buffer.

9

2. Background and Motivation

Because of the layer-wise gradient update rule of the backward propagation
algorithm, each layer’s feature maps (X) are later reused during its own
backward propagation pass.

◦ All Xs must still be available in GPU memory until backward
computation is completed.

As the number of layers increases, the fraction of memory allocated
for feature maps grows.

10

2. Background and Motivation

11

2. Background and Motivation

12

Per layers memory usage of VGG-16
(batch size: 256) during forward

VGG network

2. Background and Motivation

There are the following key observations about memory usage.
◦ The intermediate feature maps (X) and workspace (WS) incur higher

memory usage compared to the weights (W) of each layer.

◦ Most of these X are concentrated on the feature extraction layers.

◦ Most of these W are concentrated on the later classifier layers.

◦ The per layer memory usage is much smaller than memory usage of the
entire network.

13

3. virtualized DNN: Design Principle

14

GPU

Device memory

CPU

Host memory

XX

X, HtoD

Y, DtoH

YY

There is overhead due to communication between GPU and CPU.

The design objective of vDNN memory manager is to virtualize the
memory usage of DNNs, using both GPU and CPU memory, while
minimizing its impact on performance.

3. virtualized DNN: Design Principle
vDNN is based on the three key observations.
1. DNNs are via SGD are designed and structured with multiple layers.

2. The training of these neural networks involves a series of layer-wise
computations.

3. The GPU only processes a single layer’s computation at any given time.

vDNN adopts a sliding-window based, layer-wise memory
management strategy.
◦ The runtime memory manager allocates memory for the immediate

usage of the layer that is currently being processed by the GPU.

15

3. virtualized DNN: Design Principle
Forward propagation:
◦ vDNN allocates current layer’s X on GPU.

◦ Other layer’s Xs are offloaded to CPU memory.

16

3. virtualized DNN: Design Principle

17

Backward propagation:
◦ Similar to forward propagation, vDNN aggressively releases data that

are not needed for current layer’s backward computation.

3. virtualized DNN: Design Principle

18

Non-linear feedforward network
still involves a series of layer-wise
computations.
◦ vDNN can also handle non-

linear.

3. virtualized DNN: Core Operations And Its Design

19

vDNN uses cuDNN (https://developer.nvidia.com/cudnn) for
computation on GPU.
◦ cuDNN is a GPU-accelerated library for DNN.

◦ Various frameworks (including Caffe, Tensorflow, chainer) use cuDNN.

◦ cuDNN provide some algorithms for each layer’s operation, and
can find the best suited algorithm.
e.g) convolutionForward: IMPLICIT_GEMM, GEMM, FFT, etc

https://developer.nvidia.com/cudnn

3. virtualized DNN: Core Operations And Its Design

20

vDNN uses CUDA streams (https://docs.nvidia.com/cuda/cuda-c-
programming-guide/).
◦ A stream is a sequence of operations that execute in order on GPU.

◦ Different streams may execute their operations out of order with respect to
one another or concurrently.

stream1: CONV DtoHHtoD

time

cudaMemcpyAsync(HtoD, stream1);

Convolution(stream1);

cudaMemcpyAsync(DtoH, stream1);

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

3. virtualized DNN: Core Operations And Its Design

21

stream1: DtoHHtoD

time

cudaMemcpyAsync(HtoD, stream1);

Convolution(stream2);

cudaMemcpyAsync(DtoH, stream1); stream2: CONV

3. virtualized DNN: Core Operations And Its Design

22

stream1: DtoHHtoD

time

cudaMemcpyAsync(HtoD, stream1);

Convolution(stream2);

cudaStreamSynchronize(stream2);

cudaMemcpyAsync(DtoH, stream1);
stream2: CONV

3. virtualized DNN: Core Operations And Its Design

23

vDNN employs two streams, streamcompute and streammemory .
◦ streamcompute : all the layer’s forward and backward computation

◦ streammemory : the memory allocation/release, offload, and prefetch

Memory Allocation/Release
◦ When the program launches, the vDNN allocates memory pool.

◦ Whenever vDNN allocates (and releases) data structure, the memory is
allocated (released) from memory pool without cudaMalloc() and
cudaFree().

3. virtualized DNN: Core Operations And Its Design

24

Memory Offload
◦ Input feature maps (Xs) are offloaded from GPU to CPU.

◦ vDNN overlaps offloading with the same layer’s forward computation.

3. virtualized DNN: Core Operations And Its Design

25

Memory Prefetch
◦ Offloaded Xs are prefetched back from CPU to GPU.

◦ vDNN overlaps other layer’s prefetching with the current layer’s backward
computation.

3. virtualized DNN: vDNN Memory Transfer Policy

26

Determining the best layers to offload their X is a multi-dimensional
optimization problem that must consider.

1. GPU memory capacity

2. The convolutional algorithms used and the overall layer-wise memory usage

◦ “memory-optimal implicit GEMM” VS “performance-optimal convolutional
algorithm”

3. The network-wide performance

◦ The additional latency possibly incurred due to offload/prefetch

3. virtualized DNN: vDNN Memory Transfer Policy

27

Static vDNN
◦ vDNNall

◦ offload all layers’ X from GPU

◦ most memory-efficient solution

◦ vDNNconv

◦ only offload CONV layers’ X from GPU

◦ This policy is based on the observation that CONV layers have long
computation latency to hide the latency of offload/prefetch.

3. virtualized DNN: vDNN Memory Transfer Policy

28

Static vDNN
◦ Convolutional algorithm is determined with memory-optimal or

performance-optimal.

◦ While static vDNN is simple and easy to implement, it does not account
for the system architectural components that determine the trainability
and performance of a DNN.

3. virtualized DNN: vDNN Memory Transfer Policy

29

Dynamic vDNN
◦ vDNNdyn

◦ automatically determine the offloading layers and the convolutional
algorithms at runtime

◦ balance the trainability and performance of a DNN

◦ The dynamic vDNN launches profiling to optimization before training
iterations.
◦ This profiling is based on a greedy algorithm that tries to locally optimize

layer’s memory usage and performance, seeking a global optimum state in
terms of trainability and performance.

4. Methodology: GPU Node Topology

30

NVIDIA’s Titan X
◦ single precision throughput: 7 TFLOPS

◦ memory bandwidth: 336 GB/sec

◦ memory capacity: 12 GB

The GPU communicates with an Intel i7- 5930K via a PCIe switch.
◦ bandwidth of communication with CPU: 16 GB/sec

4. Methodology: DNN Benchmarks

31

Conventional DNNs
AlexNet(128), OverFeat(128), Googlenet(128),

VGG-16(64), VGG-16(128), VGG-16(256)

4. Methodology: DNN Benchmarks

32

Very Deep Networks
◦ extend the number of CONV layers of VGG

VGG-116, VGG-216, VGG-316, VGG-416

◦ batch size: 32

5. Result

33

all: static vDNNall

conv: static vDNNconv

dyn: dynamic vDNNdyn

base: not use vDNN (All memory are allocated on GPU.)

◦ vDNNall , vDNNconv and base are evaluated with both memory-
optimal (m) and performance-optimal (p).

5. Result: GPU Memory Usage

34

Performance-optimal vDNN tend to allocate more memory on GPU
to improve performance.
◦ Performance-efficient algorithms requires larger workspace.

◦ The total number of offload layers is reduced.

5. Result: Impact on Memory System

35

vDNN does come at the cost of adding read/write traffic to the GPU
memory subsystem.
◦ Potentially interfering with the normal cuDNN operations.

◦ The feature extraction layers rarely saturate the 336 GB/sec of peak memory
bandwidth.

5. Result: Performance

36

The vDNNconv ‘s throughput reach an average 97 % of baseline’s
throughput.

The dynamic vDNN does much better in terms of balancing memory
efficiency and overall throughput.

5. Result: Power

37

The system profiling utility of nvprof is used to measure the average GPU
power consumption (energy / time).

The additional energy overheads of vDNNdyn memory traffic is negligible
on average.
◦ vDNNdyn dose not incur any noticeable performance overhead.

◦ The studied DNNs rarely saturate the peak DRAM bandwidth.

5. Result: Training Very Deep Networks

38

vDNN allocates most of memory in CPU memory.
◦ Very deep networks can be trained.

vDNNdyn did not incur any noticeable performance degradations.
◦ Because the offload/prefetch latency is completely hidden.

6. Related work

39

There have been a variety of proposals aiming to reduce the memory
usage of neural networks.
◦ Network pruning techniques remove small valued weight connections.

◦ Reducing the number of bits required to model the network.

Several prior works discussed mechanisms to support virtualized memory
on GPUs.
◦ TLB implementations that consider the unique memory access patterns of

GPUs are proposed.

7. Conclusion

40

Existing ML frameworks require users to carefully manage their GPU
memory usage.

◦ vDNN solution improves the memory-efficiency of DNN.

We also study the scalability of vDNN to extremely deep network.
◦ vDNN can train networks with hundreds of layers without any

performance loss.

